

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
- **► V2V EdTech LLP**
- w2vedtech.com
- o v2vedtech

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Basic Electronics Subject Code: 22225

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q.N.		Scheme
•			
1.		Attempt any FIVE of the following:	10
	(a)	List any four specifications of resistors.	2M
	Ans.	Specifications of resistors:	
		Resistance Value / Resistivity	Any
		Tolerance	four
		Power Rating	specifica
		Thermal Stability	tions
		Maximum operating temperature	¹/2 M
		Maximum operating voltage	each
	(b)	State the need of filters in a regulated DC power supply.	2M
	Ans.	Need of filters:	
		The output of a rectifier contains dc component as well as ac	Relevant
		component. The presence of the ac component is undesirable and	need
		must be removed so that pure dc can be obtained. Filter circuits are	2M
		used to remove or minimize this unwanted ac component of the	
		rectifier output and allows only the dc component to reach the load.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

(c)	Define α and β of transistor.	2M
Ans.	α (Alpha): This is the Common Base dc current gain. It defined as	
	the ratio of collector current (I_C) to emitter current (I_E) .	
	$\alpha = \frac{I_C}{I_E}$	Each
	β (Beta): This is the Common Emitter dc current gain. It is defined as	definitio n 1M
	the ratio of collector current (I_C) to the base current (I_B) .	n INI
	$\beta = \frac{1}{I_B}$	
(d)	$\beta = \frac{I_C}{I_B}$ Draw the symbol of N-channel and P-channel enhancement type MOSFET.	2M
Ans.	Symbol of N- Channel Enhancement MOSFET:	
	Drain	
	Gate Gate	Each
		symbol
	Source	isymbol 1M
	Source	11/1
	Symbol of P- Channel Enhancement MOSFET:	
	Drain	
	Gate Source	
(e)	List the types of signals.	2M
Ans.	Types of signals:	≠ 1 ₹1
	1. Analog signal	
	2. Digital signal	Any 2
	3. AC signal	types
	4. DC signal	1M each
	5. Sinusoidal signal	
	6. Triangular signal	
	7. Square signal	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

	(f)	Draw constructional diagram of piezoelectric transducer.	2M
	(1)	(Note: Any other suitable diagram shall be considered for awarding	
		marks)	
	Ans.	Constructional diagram of piezoelectric transducer:	
		Quartz	
			Diagram
		Compressed Quartz under the application of external force/pressure	2M
	(g)	State the function of proximity sensors and photodiode.	2M
	Ans.	Functions of Proximity Sensors:	
		1. Detect the presence of an object through change in the current in	
		its coil.	
		2. Measure the small changes in displacement/ movement through changes in current.	Any one function 1M each
		Function of Photodiode:	11/1 00010
		It converts the light energy into current or voltage in reverse bias	
		condition.	
2.		Attempt any THREE of the following:	12
	(a)	State the advantages of integrated circuits over circuits with	4M
		discrete components.	
	Ans.	Advantages of Integrated circuits:	
		• Small in size due to the reduced device dimension.	A 4
		• Low weight due to very small size.	Any 4
		• Low power requirement due to lower dimension and lower threshold power requirement.	1M each
		 Low cost due to large-scale production. 	each
		 High reliability due to the absence of a solder joint. 	
		 Increased response time and speed. 	
		 Easy replacement instead of repairing as it is economical. 	
		Higher yield, because of the batch fabrication.	

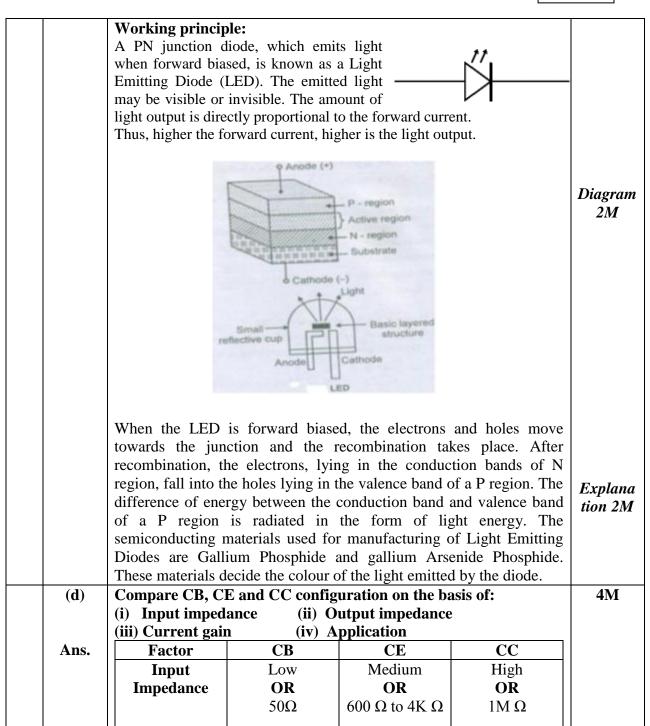
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

(b)	Define the following terms with respect to rectifier:	4M
	(i) Ripple factor	
	(ii) Rectification efficiency (η)	
	(iii) Transformer Utilization Factor (TUF)	
	(iv) Peak Inverse Voltage (PIV)	
Ans.	(i) Ripple factor: The factor which represents ac component present	
	in the rectifier output, with respect to dc component is called Ripple	
	Factor.	
	OR	
	The ratio of r.m.s. value of a.c. component to the d.c. component in	Each
	the rectifier output is known as ripple factor.	term
	Mathematically,	definiti
	$\gamma = \frac{rms \ value \ of \ ac \ component}{dc \ component}$	on 1M
	dc component	
	$\gamma = \frac{V_{rms}}{V_{ds}} = \frac{I_{rms}}{I_{ds}}$	
	V_{dc} I_{dc}	
	(ii) Postification officiency (n). This is defined as the ratio of de	
	(ii) Rectification efficiency (η): This is defined as the ratio of dc power delivered to the load to the ac input power from the secondary	
	winding of the transformer. Mathematically,	
	winding of the transformer. Mathematically,	
	, , , , , , , , , , , , , , , , , , ,	
	$\eta = \frac{dc \ power \ delivered \ to \ the \ load}{ac \ input \ power \ from \ the \ transformer \ secondary} = \frac{P_{dc}}{P_{ac}}$	
	ac input power from the transformer secondary P_{ac}	
	(iii) Transformer Utilization Factor (TUF): It is the ratio of dc	
	power delivered to the load and the ac rating of the transformer	
	secondary.	
	D.	
	$TUF = \frac{dc \ power \ delivered \ to \ the \ load}{ac \ rating \ of \ the \ transformer \ secondary} = \frac{P_{dc}}{P_{ac \ (rated \)}}$	
	P_{ac} (rated)	
	(iv) Peak Inverse Voltage (PIV): The maximum value of reverse	
	voltage (for the diode in a rectifier) occurring at the peak of the	
()	negative cycle of the input cycle is called Peak Inverse Voltage.	47 7
(c)	Draw construction of LED and explain working principle.	4M
Ans.		



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

		Output	High	Medium	Low	
		Impedance	OR	OR	OR	Correct
		Impedance	50 K Ω	10K Ω to 50K	50 Ω	compari
			JU K 32	Ω	30 32	son 1M
		Current Gain	Less than or	High (100)	High (100)	each
		Current Gam	equal to 1	OR	OR	eacn
			OR		-	
			_	$\beta = \frac{I_C}{I_B}$	$\gamma = \frac{I_E}{I_B}$	
			$\alpha = \frac{I_C}{I}$	1B	1 _B	
		Application	High	Audio	Impedance	
		Application	frequency		Matching	
			Circuits	frequency circuits	Matching	
			Circuits			
		A		(Amplifiers)		10
3.	()	Attempt any TH		_		12
	(a)	Draw and explai	n the construction	on of N-channel .	JFET.	4M
	Ans.			Drain		
			Dra			
			n-ty	pe		Diagram
		(Gate			2M
			o ↔ g	ed/y-d		
			f 5	3 4		
			Sou	TOP.		
				Cauraa		
				Source		
		Construction De	taile•			
				tuna cilicon hor a	ontaining two DN	
				• -	ontaining two PN	
				•	ns the conducting	E1
			•	- ·	pe, it is called p-	Explana
				* *	d n-channel JFET	tion 2M
			•	_	des are connected	
		-		_	taken out. Other	
					bar as shown in	
		fig.1.Thus a JFE	T has three termi	inals such as, gat	e (G), source (S)	
		and drain (D).				

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

(b)	State any four selection criteria for transducers.	4M
Ans.	Selection criteria for transducers are:	
	1. Operating range	
	2. Operating principle	
	3. Sensitivity	Any
	4. Accuracy	four
	5. Frequency response and resonant frequency	points
	6. Errors	<i>1M</i>
	7. Environmental compatibility	each
	8. Usage and ruggedness.	
	9. Electrical aspect.	
	10. Stability and Reliability	
	11. Loading effect	
	12. Static characteristics	
	13. General selection criteria	
(c)	Determine the value of resistance with the following colour code:	4M
	(i) Red, Red, Orange, Gold (ii) Brown, Black, Black, Silver	
Ans.	(i) Red, Red, Orange, Gold	
	Red Red Orange Gold $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
	$= 22 \times 1000 \pm 5\%$	Each bit 2M
	Value of resistor is $22 \text{ K}\Omega + 5\%$ OR $22000\Omega + 5\%$	
	(ii) Brown, Black, Black, Silver	
	Brown Black Black Silver 1 0 x 1 ±10%	
	$= 10 \times 1 \pm 10\%$	
	Value of resistor is $10 \Omega \pm 10\%$	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

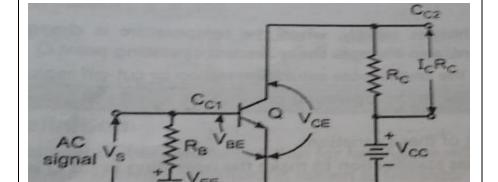
SUMMER – 2018 EXAMINATION

Subject: Basic Electronics

Subject Code:

22225

Ans.


(d)

Explain the concept of DC load line and operating point for biasing circuit.

DC load line: The straight line drawn on the characteristics of a BJT amplifier which give the DC values of collector current I_C and collector to emitter voltage V_{CE} corresponding to zero signal i.e. DC conditions is called DC load line.

1M

4M

1M

To plot $I_{C(MAX)}$, $V_{CE\ (MAX)}$ on output characteristics:

Get $V_{CE\ (MAX)}$ by putting $I_{c=0}$

$$V_{CE} = V_{CC} - I_c R_c$$

$$V_{CE~(MAX)} = V_{CC}$$
 since $I_c = 0$

Get $I_{C(MAX)}$ by putting $V_{CE=0}$

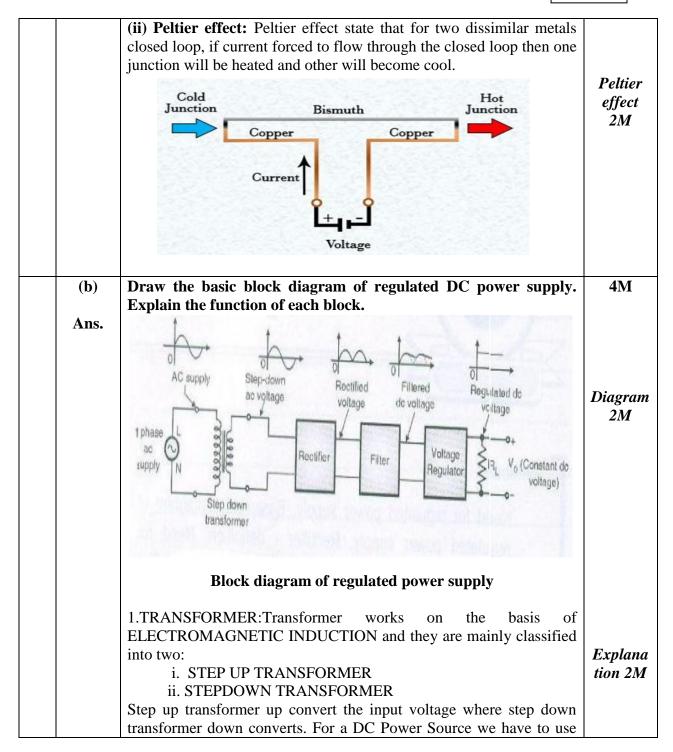
$$I_{C(MAX)} = \frac{V_{CC}}{R_C}$$

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

	step down transformers, to covert the high voltage AC supply to low voltage DC.	
	2. RECTIFIER: Rectifiers are used to convert the sinusoidal AC voltage to non-sinusoidal pulsating DC. The main component used in Rectifiers are diodes due to its switching action. They will conduct Current only in one direction, hence the voltage. So we can use them as rectifiers to make the alternating Current unidirectional. Rectifiers are classified into Three: i. HALF WAVE RECTIFIERS ii. FULL WAVE RECTIFIERS iii. BRIDGE RECTIFIERS	
	3. FILTERS: Filters are used to eliminate or filter-out the unwanted ripples from the rectified output. Filters play an important role in dc Power supplies, they make the pulsating dc steady.	
	4. VOLTAGE REGULATOR: Voltage Regulators are used to regulate the output Voltage over load. They make the Voltage	
	unvaried with load connected to it. This will eliminates the remaining ripples from the filter output. The output from Voltage Regulator may	
	be the required DC. Voltage Regulators includes some safety measures such as Current Limiting, short circuit etc.	
(c)	Describe the working of transistor as a switch with circuit diagram.	4M
Ans.	↑ Vcc	
	↑ Vcc	
	∏ _{Rc} ∏ _R	
	Y v ₀ Y v ₀	
	Vin -: -	
	Rb C	
	三 〒	
	Transistor as a Switch Circuit Diagram	

(Autonomous)

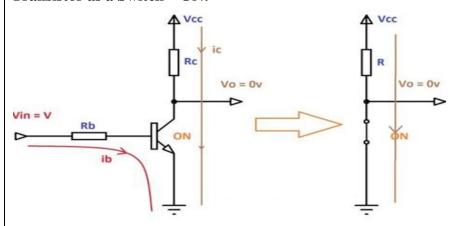
(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Basic Electronics Subject Code:

From the above circuit we can see that the control input Vin is given to base through a current limiting resistor Rb and Rc is the collector resistor which limits the current through the transistor. In most cases output is taken from collector but in some cases load is connected in


22225

• ON = Saturation

• OFF = Cutoff

the place of Rc.

Transistor as a Switch - ON:

Transistor as a Switch ON

Transistor will become ON (saturation) when a sufficient voltage V is given to input. During this condition the Collector Emitter voltage Vce will be approximately equal to zero, ie the transistor acts as a short circuit. For a silicon transistor it is equal to 0.3v. Thus collector current Ic = Vcc/Rc will flows.

ON switch 2M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Basic Electronics

Subject Code:

22225

	Transistor as a Switch – OFF:	
	Vin = 0v Vin = 0v OFF OFF	OFF switch 2M
	Transistor as a Switch OFF	
	Transistor will be in OFF (cutoff) when the input Vin equal to zero. During this state transistor acts as an open circuit and thus the entire voltage Vcc will be available at collector.	
(d)	A JFET has a drain current of 5 mA. If $I_{DSS} = 10$ mA and $V_{GS(OFF)} = -6V$. Find the value of	4M
Ans.	(i) V_{GS} (ii) V_{P} Given: $I_{D} = 5mA$	
	$I_{DSS} = 10 \text{mA}$	
	$V_{GS(OFF)} = -6V$	
	$V_{GS} = ?$	
	$V_P = ?$	
	$ m I_D = I_{DSS} \cdot \left(1 - rac{V_{GS}}{V_{GS (OFF)}} ight)^2$	Formula for I _D 1M
	$V_{GS} = \left(1 - \frac{\sqrt{I_D}}{\sqrt{I_{DSS}}}\right) X V_{GS OFF}$	2272

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Basic Electronics

Subject Code:

22225

			$\left(1 - \frac{\sqrt{5\text{mA}}}{\sqrt{10\text{mA}}}\right) X - 6$ = - 1.756V		V _{GS} calculati on 2M
		$V_P = V_P$	$V_{GS(OFF)}$ = -6V		V _P calculati on 1M
	(e)	(i) Symbol	(ii) Dire	ner diode on the basis of ection of conduction oplication	4M
	Ans.	Parameter	Zener Diode	PN Diode	
		Symbol		→	Each Point 1M
		Direction of	It conducts in both	It conducts only in one	
		conduction	directions.	direction.	
		Reverse breakdown	It has quite sharp reverse breakdown.	It has no sharp reverse breakdown.	
		Application	Commonly used for voltage regulation	commonly used for rectification	
5.		Attempt any T	TWO of the following:		12
	(a)	Calculate pea waveforms she		requency and wavelength of	6M
		V 5 V 2 2 2	$ \begin{array}{c} V \\ \hline 5 \text{ ms} \end{array} $ Fig. 1	10 V t →	
	Ans.				

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

For sine waveform: 1. Peak to peak amplitude =10 V 2. Frequency= $1/T = 1/(2.5 \text{ms}) = 400 \text{ Hz}$ 3. wavelength $\lambda = \text{Vc/f} = (3*10^8)/400 = 750000 \text{ m}$ For square waveform: 1. Peak to peak amplitude =20 V 2. Frequency= $1/T = 1/(20 \text{ ms}) = 50 \text{ Hz}$ 3. wavelength $\lambda = \text{Vc/f} = (3*10^8)/50 = 6000000 \text{ m}$ (b) In CE configuration, if $\beta = 100$, leakage current $I_{\text{CEO}} = 150 \mu\text{A}$. If the base current is 0.2 mA, calculate the value of I_{C} , I_{E} and α . (Note: Marks should be given for correct formula) Given data: $\beta = 100$, $I_{\text{CEO}} = 150 \mu\text{A}$. I_{B} is 0.2mA, To find I_{C} , I_{E} and α . Solution: We know 1) $\alpha = \beta/(\beta + 1)$ = $100/(100 + 1) = 0.99$ 2) I_{C} is given as, $I_{\text{C}} = \beta * I_{\text{B}} + I_{\text{CEO}}$ = $(100*0.2*10^3) + 150*10^{-6} = 20.150 \text{ mA}$. (c) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input. The given circuit is Bridge rectifier—(with diodes numbered)			
2. Frequency=1/T = 1/(2.5ms) = 400 Hz 3. wavelength λ = Vc/f = (3*10 ⁸)/400 = 750000 m For square waveform: 1. Peak to peak amplitude = 20 V 2. Frequency=1/T = 1/(20 ms) = 50 Hz 3. wavelength λ = Vc/f = (3*10 ⁸)/50 = 60000000 m (b) In CE configuration, if β = 100, leakage current I _{CEO} = 150 μA. If the base current is 0.2 mA, calculate the value of I _C , I _E and α. (Note: Marks should be given for correct formula) Ans. Given data:-β = 100, I _{CEO} = 150 μA. I _B is 0.2mA, To find I _C , I _E and α. Solution: We know 1) α = β / (β + 1) = 100/(100+1) = 0.99 2) I _C is given as, I _C = β *I _B +I _{CEO} = (100*0.2*10 ³) +150*10 ⁻⁶ = 20.150 mA. 3) I _E is given as, I _E =I _C + I _B = (20.150 +0.2) mA = 20.35 mA (c) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input.		For sine waveform:	
3. wavelength $\lambda = \text{Vc/f} = (3*10^8)/400 = 750000 \text{ m}$ For square waveform: 1. Peak to peak amplitude $= 20 \text{ V}$ 2. Frequency= $1/\text{T} = 1/(20 \text{ ms}) = 50 \text{ Hz}$ 3. wavelength $\lambda = \text{Vc/f} = (3*10^8)/50 = 60000000 \text{ m}$ (b) In CE configuration, if $\beta = 100$, leakage current $I_{\text{CEO}} = 150 \text{ µA}$. If the base current is 0.2 mA, calculate the value of I_{C} , I_{E} and α . (Note: Marks should be given for correct formula) Given data: $\beta = 100$, $I_{\text{CEO}} = 150 \text{ µA}$. I_{B} is 0.2mA, To find I_{C} , I_{E} and α . Solution: We know 1) $\alpha = \beta / (\beta + 1)$ = $100/(100+1) = 0.99$ 2) I_{C} is given as, $I_{\text{C}} = \beta * I_{\text{B}} + I_{\text{CEO}}$ = $(100^*0.2*10^3) + 150*10^{-6} = 20.150 \text{ mA}$. 3) I_{E} is given as, $I_{\text{E}} = I_{\text{C}} + I_{\text{B}} = (20.150 + 0.2) \text{ mA} = 20.35 \text{ mA}$ (c) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input.			
For square waveform: 1. Peak to peak amplitude =20 V 2. Frequency=1/T =1/(20 ms) = 50 Hz 3. wavelength λ = Vc/f =(3*10 ⁸)/50 =6000000 m (b) In CE configuration, if β = 100, leakage current I _{CEO} = 150 μ A. If the base current is 0.2 mA, calculate the value of I _C , I _E and α . (Note: Marks should be given for correct formula) Ans. Given data: β =100, I _{CEO} = 150 μ A. I _B is 0.2mA, To find I _C , I _E and α . Solution: We know 1) α = β / (β +1) = 100/(100+1) = 0.99 2) I _C is given as, I _C = β *I _B +I _{CEO} = (100*0.2*10 ⁻³) +150*10 ⁻⁶ =20.150 mA. 3) I _E is given as, I _E =I _C +I _B =(20.150 +0.2) mA =20.35 mA (c) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input.		2. Frequency= $1/T = 1/(2.5 \text{ms}) = 400 \text{ Hz}$	
1. Peak to peak amplitude =20 V 2. Frequency=1/T =1/(20 ms) = 50 Hz 3. wavelength λ = Vc/f =(3*10*)/50 =60000000 m (b) In CE configuration, if β = 100, leakage current I _{CEO} = 150 μA. If the base current is 0.2 mA, calculate the value of I _C , I _E and α. (Note: Marks should be given for correct formula) Ans. Given data: β =100, I _{CEO} = 150 μA. I _B is 0.2mA, To find I _C , I _E and α. Solution: We know 1) $\alpha = \beta / (\beta + 1)$		3. wavelength $\lambda = Vc/f = (3*10^8)/400 = 750000 \text{ m}$	Each
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		For square waveform:	calculati
$\begin{array}{c c} \textbf{(b)} & \textbf{In CE configuration, if } \beta = \textbf{100}, \textbf{ leakage current } \textbf{I}_{CEO} = \textbf{150 } \mu \textbf{A}. \textbf{ If } \\ \textbf{the base current is } \textbf{0.2 mA, calculate the value of } \textbf{I}_{C}, \textbf{I}_{E} \textbf{ and } \alpha. \\ \textbf{(Note: Marks should be given for correct formula)} \\ \textbf{Ans.} & \textbf{Given data:} -\beta = \textbf{100}, $		1. Peak to peak amplitude =20 V	on 1M
(b) In CE configuration, if $\beta=100$, leakage current $I_{CEO}=150~\mu A$. If the base current is 0.2 mA, calculate the value of I_C , I_E and α . (Note: Marks should be given for correct formula) Given data: $-\beta=100$, $I_{CEO}=150~\mu A$. I_B is $0.2mA$, To find I_C , I_E and α . Solution: We know $I_0 = \beta/(\beta+1) = 100/(100+1) = 0.99$ 2) I_C is given as, $I_C = \beta*I_B+I_{CEO} = (100*0.2*10^{-3}) +150*10^{-6} = 20.150~mA.$ 3) I_E is given as, $I_E=I_C+I_B = (20.150+0.2)~mA = 20.35~mA$ (c) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input.			
the base current is 0.2 mA, calculate the value of I_C , I_E and α . (Note: Marks should be given for correct formula) Given data:- β = 100, I_{CEO} = 150 μ A. I_B is 0.2 mA, To find I_C , I_E and α . Solution:- We know 1) $\alpha = \beta / (\beta + 1)$ = 100/(100+1)= 0.99 2) I_C is given as, $I_C = \beta * I_B + I_{CEO}$ = (100*0.2*10 ⁻³) +150*10 ⁻⁶ = 20.150 mA. (c) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input. (b) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input.		3. wavelength $\lambda = Vc/f = (3*10^8)/50 = 6000000 \text{ m}$	
Ans. $(Note: Marks should be given for correct formula)$ Given data: $\beta = 100$, $I_{CEO} = 150 \mu A$. I_B is $0.2 mA$, To find I_C , I_E and α . Solution: We know $1) \alpha = \beta / (\beta + 1)$ $= 100/(100+1) = 0.99$ $2) I_C$ is given as, $I_C = \beta * I_B + I_{CEO}$ $= (100*0.2*10^{-3}) + 150*10^{-6} = 20.150 mA$. $I_E = I_C + I_B = (20.150 + 0.2) mA = 20.35 mA$ $(c) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input. (f) I_C = \beta * I_C + I_$	(b)	In CE configuration, if $\beta = 100$, leakage current $I_{CEO} = 150 \mu A$. If	6M
Ans. Given data: $-\beta = 100$, $I_{CEO} = 150~\mu A$. I_B is $0.2 mA$, To find I_C , I_E and α . Solution: We know $1) \alpha = \beta / (\beta + 1)$ $= 100/(100+1) = 0.99$ $2) I_C$ is given as, $I_C = \beta * I_B + I_{CEO}$ $= (100*0.2*10^{-3}) + 150*10^{-6} = 20.150~mA.$ $I_E = I_C + I_B = (20.150 + 0.2)~mA = 20.35~mA$ (c) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input. 6M		the base current is 0.2 mA, calculate the value of I_C , I_E and α .	
To find I_C , I_E and α . Solution: We know 1) $\alpha = \beta / (\beta + 1)$ = $100/(100+1) = 0.99$ 2) I_C is given as, $I_C = \beta * I_B + I_{CEO}$ = $(100*0.2*10^{-3}) + 150*10^{-6} = 20.150 \text{ mA}$. 1) I_E is given as, $I_E = I_C + I_B = (20.150 + 0.2) \text{ mA} = 20.35 \text{ mA}$ 1) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input. 1) $I_E = I_C + I_B = (20.150 + 0.2) \text{ mA} = 20.35 \text{ mA}$ 2) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input.		(Note: Marks should be given for correct formula)	
To find I_C , I_E and α . Solution: We know 1) $\alpha = \beta / (\beta + 1)$ = $100/(100+1) = 0.99$ 2) I_C is given as, $I_C = \beta * I_B + I_{CEO}$ = $(100*0.2*10^{-3}) + 150*10^{-6} = 20.150 \text{ mA}$. (c) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input. $ \begin{array}{c} 2M \text{ for} \\ \text{correct} \\ \text{calculati} \\ \text{on of} \\ \text{each} \\ \text{paramet} \\ \text{er} \\ \text{(Formul} \\ \text{a } 1M, \\ \text{Calculat} \\ \text{ion -1M} \end{array} $	Ans.	Given data: $-\beta = 100$, $I_{CEO} = 150 \mu\text{A}$. I_B is 0.2mA,	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		· · · · · · · · · · · · · · · · · · ·	2M for
$1) \alpha = \beta / (\beta + 1) \\ = 100/(100+1) = 0.99$ $2) I_C \text{ is given as,} \\ I_C = \beta * I_B + I_{CEO} \\ = (100*0.2*10^{-3}) + 150*10^{-6} = 20.150 \text{ mA.}$ $3) I_E \text{ is given as,} \\ I_E = I_C + I_B = (20.150 + 0.2) \text{ mA} = 20.35 \text{ mA}$ $(c) \text{ Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input.}$ $6M$		Solution :-	correct
$= 100/(100+1) = 0.99$ $= 2) I_C \text{ is given as,}$ $I_C = \beta *I_B + I_{CEO}$ $= (100*0.2*10^{-3}) + 150*10^{-6} = 20.150 \text{ mA.}$ $I_E = I_C + I_B = (20.150 + 0.2) \text{ mA} = 20.35 \text{ mA}$ $(c) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input.} 6M$		We know	calculati
2) I_C is given as, $I_C = \beta * I_B + I_{CEO}$ (Formul = $(100*0.2*10^{-3}) + 150*10^{-6} = 20.150 \text{ mA}$. 3) I_E is given as, $I_E = I_C + I_B = (20.150 + 0.2) \text{ mA} = 20.35 \text{ mA}$ (c) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input.		1) $\alpha = \beta / (\beta + 1)$	on of
2) I_C is given as, $I_C = \beta * I_B + I_{CEO}$ $= (100*0.2*10^{-3}) + 150*10^{-6} = 20.150 \text{ mA}.$ (Formul a 1M, Calculat ion -1M) (c) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input.		= 100/(100+1) = 0.99	each
$I_{C}=\beta*I_{B}+I_{CEO}\\ =(100*0.2*10^{-3})+150*10^{-6}=20.150~\text{mA}. \qquad \qquad$			paramet
$I_{C}=\beta*I_{B}+I_{CEO}\\ =(100*0.2*10^{-3})+150*10^{-6}=20.150~\text{mA}. \qquad \qquad$		2) I _C is given as,	er
$= (100*0.2*10^{-3}) + 150*10^{-6} = 20.150 \text{ mA}.$ $3) \text{ I}_E \text{ is given as,}$ $I_E = I_C + I_B = (20.150 + 0.2) \text{ mA} = 20.35 \text{ mA}$ $(c) \qquad \text{Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input.}$ $6M$		1 ' =	(Formul
3) I_E is given as, $I_E = I_C + I_B = (20.150 + 0.2) \text{ mA} = 20.35 \text{ mA}$ (c) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input.		$= (100*0.2*10^{-3}) + 150*10^{-6} = 20.150 \text{ mA}.$	a 1M,
$I_E = I_C + I_B = (20.150 + 0.2) \text{ mA} = 20.35 \text{ mA}$ (c) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input. $I_E = I_C + I_B = (20.150 + 0.2) \text{ mA} = 20.35 \text{ mA}$			Calculat
(c) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input. 6M		3) I _E is given as,	ion -1M)
(c) Identify the circuit shown in Fig. 2 and explain working with input-output waveforms for a sinusoidal input. 6M		, = 9	·
input-output waveforms for a sinusoidal input.	(c)		6M
Void Void Fig. 2		•	
V _{in} Fig. 2			
V _{in} Fig. 2		X X	
Fig. 2		Vout	
		V _{in}	
		· ·	
Ans. The given circuit is Bridge rectifier— (with diodes numbered)		Fig. 2	
Ans. The given circuit is Bridge rectifier— (with diodes numbered)			
	Ans.	The given circuit is Bridge rectifier— (with diodes numbered)	
		(

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

		 Working:- The four diodes labelled D1 to D4 are arranged in "series pairs" with only two diodes conducting current during each half cycle. During the positive half cycle of the supply:- diodes D1 and D2 conduct in series while diodes D3 and D4 are reverse biased and the current flows through the load for the period o to π During the negative half cycle of the supply:- diodes D3 and D4 conduct in series, but diodes D1 and D2 switch "OFF" as they are 	Correct Identific ation 2M Explana tion 2M
		now reverse biased. The current flowing through the load is the same direction as before for the period π to 2π . Waveforms:-	
		VS + 77 - 27	Wavefor ms 2M
6.	(a)	Attempt any TWO of the following: The following readings were obtained experiment from JFET. $V_{GS} = 0 \; V = 0 \; V = -0.2 \; V$	12 6M
		V _{DS} 7 V 15 V 15 V I _D 10 mA 10.25 mA 9.65mA	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Basic Electronics

Subject Code:

22225

Ans.	Determine: (i) AC drain resistance (ii) Transconductance (iii) Amplification factor (Note: Formula should be given marks) (i) AC drain resistance is given as, $r_d = \frac{\Delta V_{DS}}{\Delta I_{D}}$ at V_{GS} constant	
	$\frac{15V-7V}{10.25-10\text{mA}} = \frac{8V}{0.25\text{mA}} = 32\text{K}\Omega$ (ii) Transconductance $g\text{m}$ is given as , $g_m = \frac{\Delta I_D}{\Delta V_{GS}}$, V_{DS} at constant $\frac{10.25\text{mA} - 9.65\text{mA}}{0 - (-0.2V)} = \frac{0.6\text{mA}}{0.2V} = 3\text{m Mho}$	2M for each (1M for Formula, 1M for calculati
	(iii) Amplification factor μ $\mu = r_d \times g_m = 32 \text{ K}\Omega \times 3\text{m Mho} = 96$	on)
(b)	Observe the given frequency response of RC coupled amplifier in Fig. 3 Calculate: (i) Lower cut-off frequency (F_L) (ii) Higher cut-off frequency (F_H) (iii) Bandwidth (BW)	6M
Ans.	3	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

	As maximum gain is 15 dB, 3 dB down gain is 12 dB. So, (i) The lower cut-off frequency F_L = 1KHz (ii) Higher cut-off frequency F_H =100 MHz (iii) Bandwidth (BW) = F_H - F_L =(100000 -1)KHz = 99999 KHz	2M for each proper answer
(c)	Identify active and passive transducer from the following transducers:	6M
Ans.	 (i) Capacitive transducer (ii) Photovoltic cells (iii) Piezoelectric transducer (iv) Strain gauge (v) Thermocouple (vi) Thermisters (i) Capacitive transducer-passive transducer (ii) Photovoltaic cells- active transducer (iii) Piezoelectric transducer-active transducer (iv) Strain gauge-passive transducer (v) Thermocouple- active transducer (vi) Thermisters- passive transducer 	1M each for right answer