

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

<u>MODEL ANSWER</u> WINTER– 18 EXAMINATION

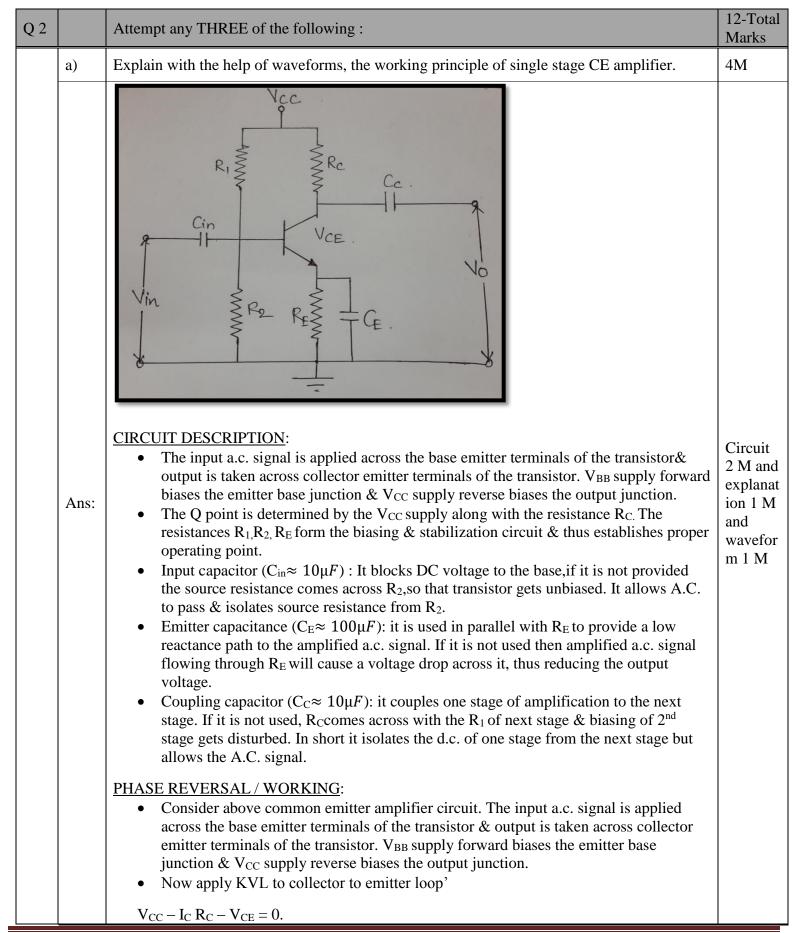
Subject Title: Applied Electronics

Subject Code: 22329 3 Hours / 70 Marks

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Anguar	Marking Scheme
Q.1		Attempt any HIVE of the following .	10-Total Marks
	a) Ans:	Define the term related to power amplifier. (i) Efficiency (i) Voltage gain (ii) (i) Efficiency: Efficiency of the power amplifier is defined as the ratio of maximum	2M
		a.c. output power to the d.c. input power. Mathematically,	1 Mark for each definati on

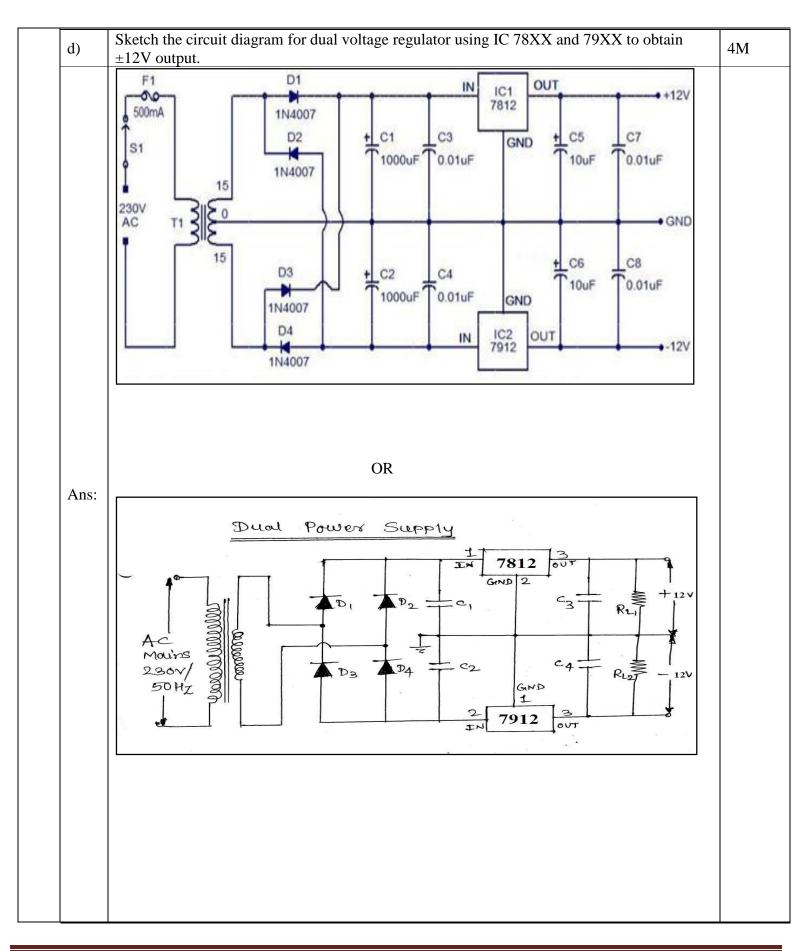


b)	List any four applications of RC coupled amplifier.	2M
Ans:	Applications of RC coupled amplifier:(i)Widely used as Voltage amplifiers.(ii)They are used in Public Address System.(iii)In Tape recorders.(iv)In stereo amplifiers(v)In T.V. V.C.R. and C.D. Players.	1 Marks each (Any four)
c)	State the role of tuned LC circuit in tuned amplifier.	2M
Ans:	In order to pick up and amplify the desired radio frequency signal, the resistive load in the audio amplifier is replaced by a tuned circuit (also called a parallel resonant circuit)as shown in the figure. The tuned circuit is capable of selecting as particular frequency and rejecting the others.	State 1 ^{1/2} Marks and Diagra m 1/2 mark
d)	List different types of feedback amplifiers.	2M
Ans:	Types of feedback amplifiers: 1. Positive feedback amplifiers 2. Negative feedback amplifiers (i)voltage series feedback amplifiers (ii)voltage shunt feedback amplifiers (iii)current series feedback amplifiers (iv)current shunt feedback amplifiers	Each type 1 mark
e)	List the advantages of negative feedback over positive feedback.	2M
Ans:	 <u>Advantages of negative feedback over positive feedback</u>: 1. Higher fidelity i.e. more linear operation. 2. Highly stabilized gain. 3. Increased bandwidth i.e. improved frequency response. 	Any four Each 1 mark

	4. Less amplitude distortion.	
	5. Reduced noise.	
	6. Less harmonics distortion.	
	7. Less phase distortion.	
	8. Input and output impedance can be modified as desired.	
	9. Less frequency distortion.	
	7. Less frequency distortion.	
f)	Compare amplifier and oscillator.	2M
Ans:	Figure shows a block diagram of an amplifier and an oscillator. An amplifier is a device, which produces an output signal with similar waveform as that of the input. But its power level is generally high. This additional power is supplied by an external D.C. source. Thus an amplifier is essentially an energy convection device I.e. a device, which gets energy from the D.C. source and converts it into an a.c. energy at the same frequency as that of the input signal. The D.C. to A.C conversion is controlled by the input signal. It means that if there is no input signal then no energy conversion take place. Thus there is no output signal. An oscillator is a device, which produces an output signal, without any input signal of any desired frequency. It keeps producing an output signal, so long as the D.C. power is supplied. An oscillator does not require any external signal to start or maintain energy conversion process.	Diagra m 1 mark and explaina tion 1 mark
g)	State use of heat sink.	2M
Ans:	Heat sink is a heat exchanger used to transfer heat generated by a <i>mechanical or an electronic device</i> to the surroundings. Heat sinks are either made up of aluminium or copper or any other material which is good conductor of heat. Because conductor helps in conduction of heat from heated surface to the outside air.	State 2
	Heat sinks are commonly used in laptops, computers etc.	mark
	A heat sink is usually made out of copper and/or aluminum.	

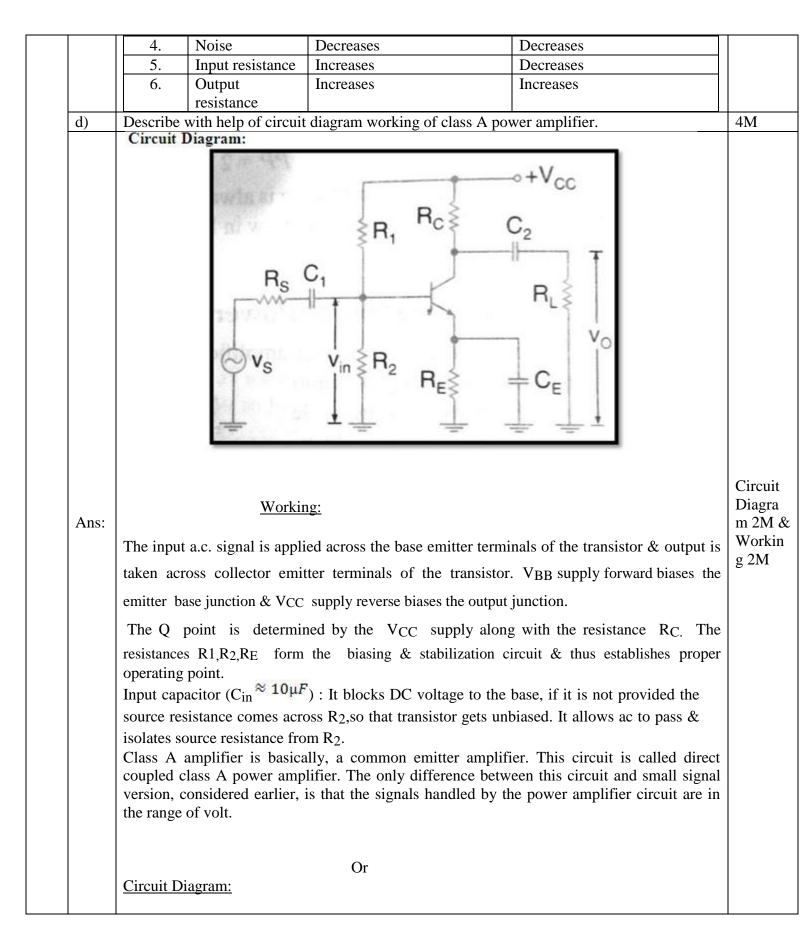
	•	$V_{CC} - I_C R_C = V_{CE}$ When the input a.c. signal collector current increases in constant, from equation of the second sec	gnal voltage increase ases (as $I_C = \beta I_B$). Heation 1 output voltage on emitter amplifier	Hence voltage drop I_C e V_{CE} decreases. when the input increas	R_C increases. As V_{CC} ses in the positive, the	
	Wavefo	orm.				
	Waveform:					
	Vo		t			
	T.					
b)	Compa	re positive and negativ	//e feedback.			4M
b)	-	re positive and negativ	•	Negative	1	4M
b)	Compar Sr. No.	re positive and negativ	/e feedback. Positive feedback	Negative feedback		4M
b)	Sr.		Positive			4M
b)	Sr. No.	Parameter	PositivefeedbackIncreasesIn phase with the	feedbackDecreases180 ° out of phase		4M
b)	Sr. No. 1	Parameter BW	Positive feedback Increases	feedback Decreases		4M
b)	Sr. No. 1	Parameter BW	PositivefeedbackIncreasesIn phase with the	feedbackDecreases180 ° out of phasewith the input		Any
b) Ans:	Sr. <u>No.</u> 1 1	Parameter BW Feedback signal	Positive feedbackIncreasesIn phase with the input signal.	feedbackDecreases180 ° out of phasewith the inputsignal.		Any four points
	Sr. No. 1 1 2	Parameter BW Feedback signal Net input signal	Positive feedbackIncreasesIn phase with the input signal.Increases	feedbackDecreases180 ° out of phasewith the inputsignal.Decreases		Any four points Each point 1
	Sr. No. 1 1 2 3	Parameter BW Feedback signal Net input signal Gain	Positive feedbackIncreasesIn phase with the input signal.IncreasesIncreases	feedbackDecreases180 ° out of phasewith the inputsignal.DecreasesDecreases		Any four points Each
	Sr. No. 1 1 2 3 4 4	Parameter BW Feedback signal Net input signal Gain Noise	Positive feedbackIncreasesIn phase with the input signal.IncreasesIncreasesIncreasesIncreases	feedbackDecreases180 ° out of phasewith the inputsignal.DecreasesDecreasesDecreases		Any four points Each point 1
	Sr. No. 1 1 2 3 4 5	Parameter BW Feedback signal Net input signal Gain Noise Stability	Positive feedbackIncreasesIn phase with the input signal.IncreasesIncreasesIncreasesPoor	feedbackDecreases180 ° out of phasewith the inputsignal.DecreasesDecreasesDecreasesImproved		Any four points Each point 1

c)	Define oscillator and state the Barkhausen criterion for the generation of sustained oscillations.	4M
Ans:	<u>Oscillator</u> : An oscillator is a device, which produces an output signal, without any input signal of any desired frequency. Barkhausen criterion: The overall voltage gain of a positive feedback amplifier is given by, $\boxed{A^{*} = \frac{A}{1 - \beta A}}$ (1) Where, A = gain of an amplifier without feedback also called open loop gain β A = product of feedback fraction and open loop gain. It is called loop gain. The Barkhausen criterion for the generation of sustained oscillations. for positive feedback are: 1. β A = 1 2. $\frac{1}{\beta} \beta$ A = 360° or 0° ie the total phase shift should be 360° or 0°.	Definiti on 1 M and Barkhau sen criterion 3 M
d)	Explain the working of SMPS with neat block diagram.	4M
Ans:	A block diagram of Switch Mode Power Supply is shown in figure. The first block is rectifier and filter that converts the A.C. supply voltage to pulsating D.C. which is then filtered out to reduce the amount of ripple content. This section uses the power diodes in bridge configuration to obtain the pulsating d.c. and the capacitor is used as a filter element. The second block is the high frequency switching section and it uses either MOSFETs or BJTs to convert the D.C. voltage to a high frequency ac\.c. square wave. This high frequency a.c. square waves ranges from 20 KHz to 100 KHz. Since the power transistors are not operated in their active region, their operation results in low power dissipation. Thus it is a two stage conversion i.e. the input a.c. supply voltage is first rectified to d.c. and then the high frequency switching section changes it back to A.C. The next block of SMPS is high frequency power transformer that isolate the circuit and step up or step down the voltage to the desired voltage level. The output of the transformer is the input of the second rectifier section, called the output rectifier section. This rectifier section is different from the first block of the rectifier in that the frequency of	Block diagram 2 M And explana ion 2 M

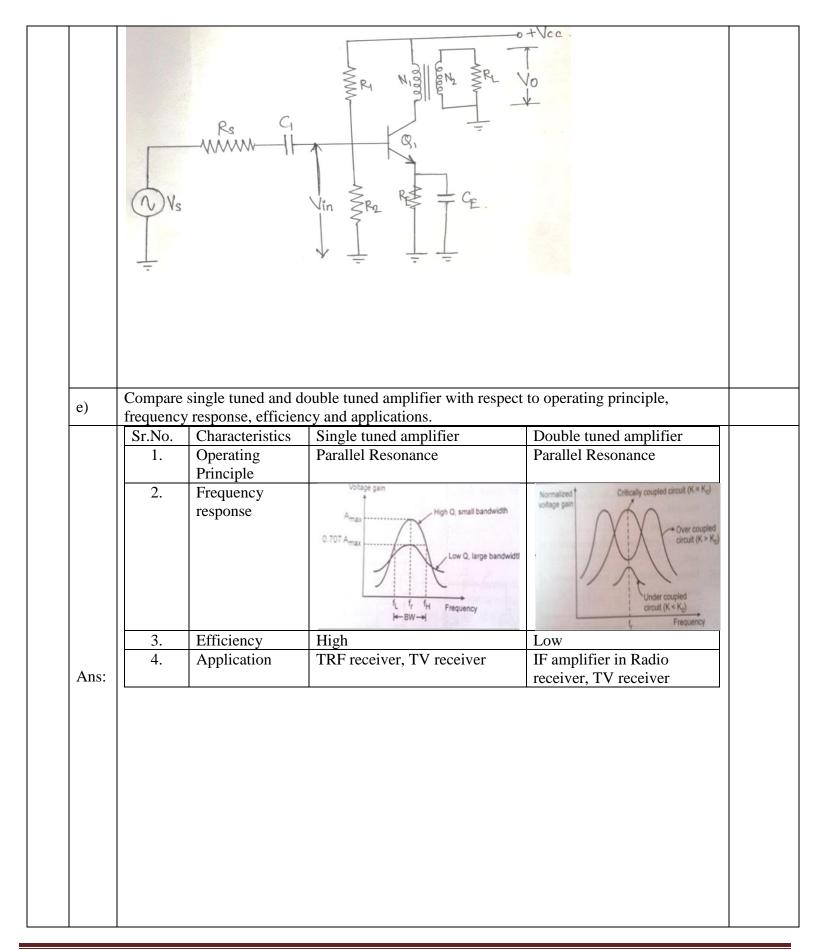


		small in output voltage of the rectifier, a small capacitance is required in the filter section. The last section of the SMPS is the control and feedback block, which contains circuitry that provides Pulse Width Modulation (PWM) output signal. The PWM controller provides duty cycle that varies pulse by pulse to provide an accurate d.c. output voltage.	
Q.3	a) Ans:	Attempt any THREE of the following : Explain with sketch the working of class B push pull amplifier. Circuit Diagram:-	12-Total Marks4M6Circuit Diagram 2M & Operati on 2M
	b)	wave in the load resistor. Compare different types of power amplifier on basis of- (i) Efficiency.	4M

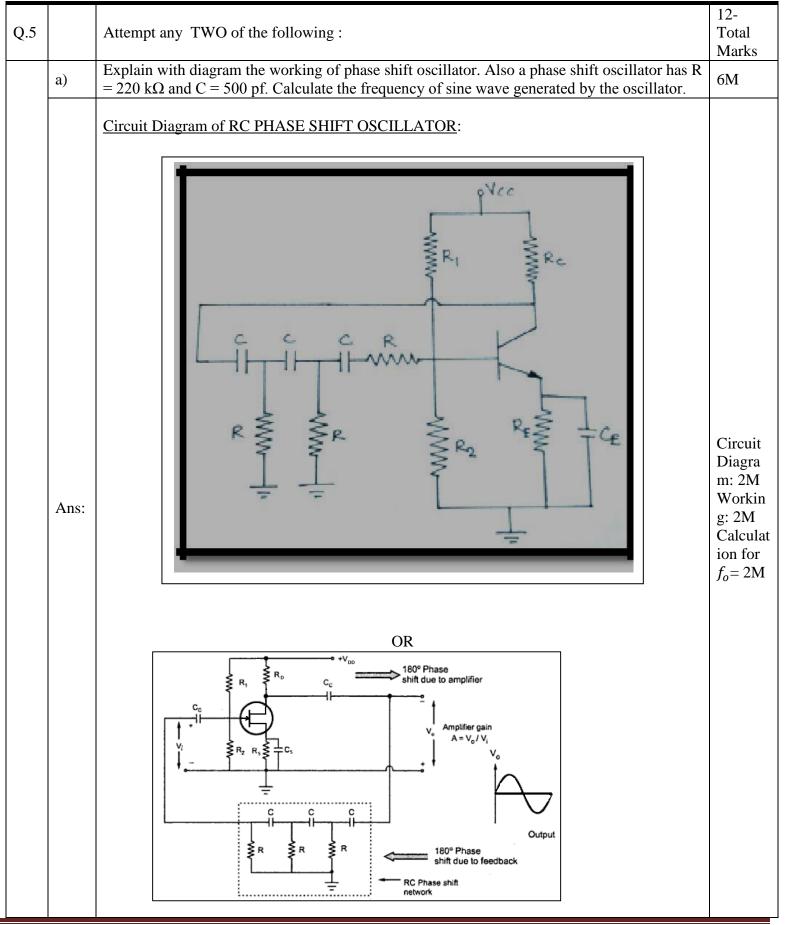
	Parameter	Class A	Class B	Class AB	Class C	
	Position of operating pt. (Q Point) on load line	Q point is at the center of load line.	On X axis	Just above X axis.	Below X axis.	
Ans:	Efficiency	lowest efficiency 25% to 50%	Above 78.5%	Between 50 to 78.5%	Above 95%	Ead dif ce 1M
	Conduction Angle of collector current	Conducts for (360 ⁰) full cycle of input signal	(180 ⁰) half cycle of input signal.	Greater than 180° and less than 360°	Less than 180 ⁰ of input signal.	
	Power dissipation in transistor	Very High	Low	Low	Very Low	
	Applications of Mil 1. Applicatio 2. Television 3. CRO	sweep circuit.	<u>tor: (any two)</u> tput is expected	ed.		4N Dia m: & Ap ior (ar two 2N



Q.4	A)	Attempt any THREE of the following :	12-Total Marks
	a)	State the necessity of regulated power supply. Define load and line regulation.	4M
		Necessity of regulated power supply: 2M	
		The major disadvantage of a power supply is that the output voltage changes with the variations in the input voltage or The D.C output voltage of the rectifier also increase similarly, In many electronic applications, it is desired that the output voltage should remain constant regardless of the variations in the input voltage or load. In order to get ensure this; a voltage stabilizing device called voltage regulator is used.	
		Load Regulation:1M The load regulation indicates the change in output voltage that will occur per unit change in load current. Mathematically,	Necessit y 2M , Load
	Ans:	Load Regulation = $\frac{V_{NL} - V_{FL}}{\Delta I_{I}}$	Regulati
		Where, V_{FL} is full load voltage	on 1M & Line
		ΔI_L is change in laod current	regulati
		V _{NL} is no load voltage	on 1M
		$\label{eq:line_regulation:1M} \begin{split} \underline{\text{Line Regulation:}1M} & \\ \text{The change in output voltage with respect to per unit change in input voltage is defined as} \\ & \\ \text{line regulation. It is mathematically expressed as,} \\ & \\ & \\ \text{Line regulation=} \Delta V_L / \Delta V_S \\ \text{Where,} \\ & \\ \Delta V_L = \text{The change in output voltage} \\ & \\ \Delta V_S = \text{The change in input voltage} \end{split}$	
	b)	Explain the working principle of crystal oscillator with diagram.	4M
	Ans:	Circuit Diagram:	



	-	Principle of Piezoe artz Crystal has a v	electric Crystal: very peculiar property known a	as Piezoelectric Effect.	
	Accor	rding to this effe		applied across a quartz crystal, it	
		ersely, if a mecha oltage.	nical force is applied to vibra	te a quartz crystal it generates an	
	crystaThe rcapac	al is connected as a resistors R_1 , R_2 a resistor C_E provides a	a series element in the feedback nd R_E provide voltage divide a.c bypass of emitter resistor an	ing transistor. In this circuit, the c path from collector to the base. er stabilized d.c. bias circuit. The nd RFC coil provides for d.c bias. the circuit operating frequency.	
		circuit frequency of s value is given by		s resonant frequency of the crystal	
			$fr = \frac{1}{2\pi\sqrt{LC}}$ Or		
	the base g feedback r by a fracti as an indu possible o f_s and the the freque	the D.C. power is ets amplified and a network consisting on of energy feedb actor L so that the f only, if the frequence parallel resonant f ency of oscillations	appears at the output. This amp g of a quartz crystal and capacit back from the output to the inpufeedback network consists of se cy of oscillations f_0 is in betwee	tor C. Thus the crystal is excited ut. The crystal is made to operate eries resonant LC circuit. This is en the series resonant frequency uivalent circuit of a crystal . Thus,	
			$fr = \frac{1}{2\pi\sqrt{LC}}$		
c)	Compare	the performance of	f current series and current shu	nt feedback amplifier.	4M
	Sr.No.	Characteristics	Current series feedback	Current shunt feedback	(Any
		 	amplifier	amplifier	Four
	1.	Voltage gain	Decreases	Decreases	each
Ans					1 1 20 11
Ans:	2. 3.	Bandwidth Harmonic	Increases Decreases	Increases Decreases	carry



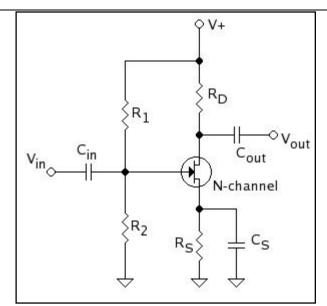
WORKING:

- Common emitter amplifier introduces a 180⁰ phase shift between input & output. & remaining 180⁰ phase shift is produced by three identical basic RC phase shifting networks.
- Each RC network is designed to introduce a phase shift of 60° .
- The phase shift around the loop is 360° only at one precise frequency.
- This frequency of oscillation is given by

$$f_o = \frac{1}{2 \pi RC \sqrt{6}}$$

• The feedback factor
$$\beta = \frac{1}{29}$$

• Therefore
$$A_V = 29$$


Calculation For
$$f_o$$
:
Given:
R= 220 K Ω
C= 500pF
To Find:
Frequency of oscillation f_o .
Formula Used: $f_o = \frac{1}{2 \pi RC \sqrt{6}}$
Solution: $f_o = \frac{1}{2 \pi RC \sqrt{6}}$
 $f_o = \frac{1}{2 \pi * 220K\Omega * 500pF * \sqrt{6}}$

$$f_o = 590.67 \text{ Hz}$$

The frequency of sine wave generated by the oscillator = 590.67 Hz.

	The frequency of sine wave generated by the oscillator – 590.07 fiz.	
b)	Explain operation of FET common source amplifier with applications.	6M
Ans:	COMMON SOURCE FET AMPLIFIER: <u>Circuit Diagram:</u>	Circuit Diagra m: 2M Operati on: 2M Applica tions (any 2): 2M

- Above circuit shows CS N-channel FET amplifier.
- Voltage divider biasing circuit is used.
- C_1 & C_2 are coupling capacitors used to couple input AC signal & output respectively.

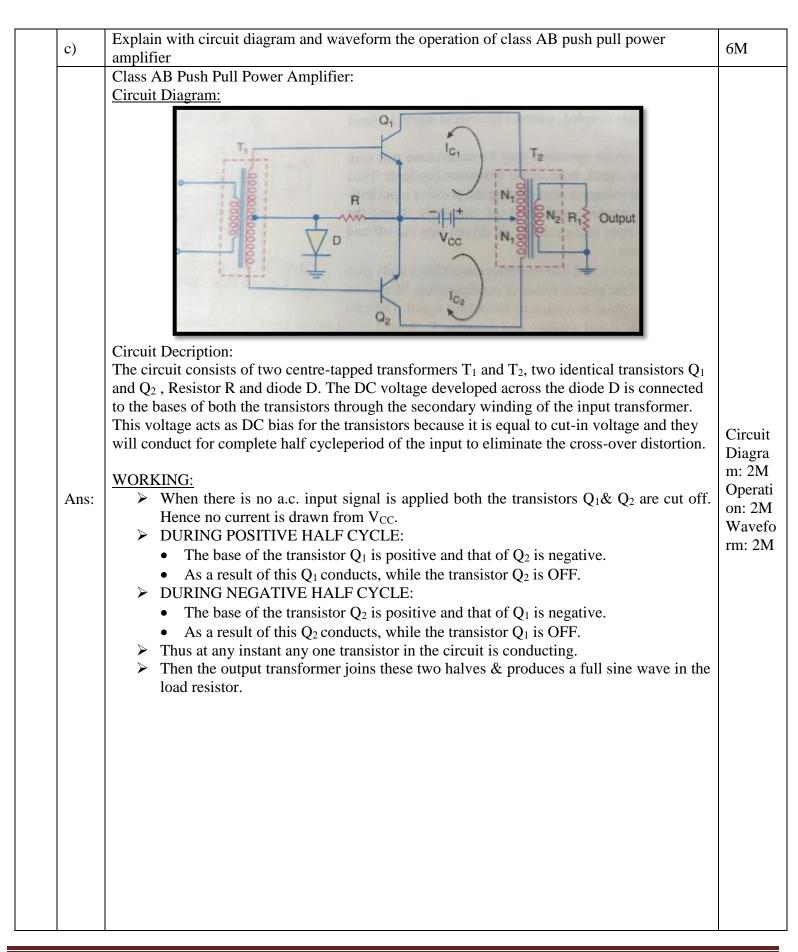
• Cs is a bypass capacitor which keeps the source of FET effectively.

OPERATION:

DURING POSITIVE HALF CYCLE:

- As the gate to source voltage increases, the drain current also increases.
- As a result of this, the voltage drop across resistor R_D also increases.
- This causes the drain voltage to decrease. As $V_{DS} = V_{DD} I_D R_D$.
- It means that the positive half cycle of the input produces negative half cycle of the output voltage.

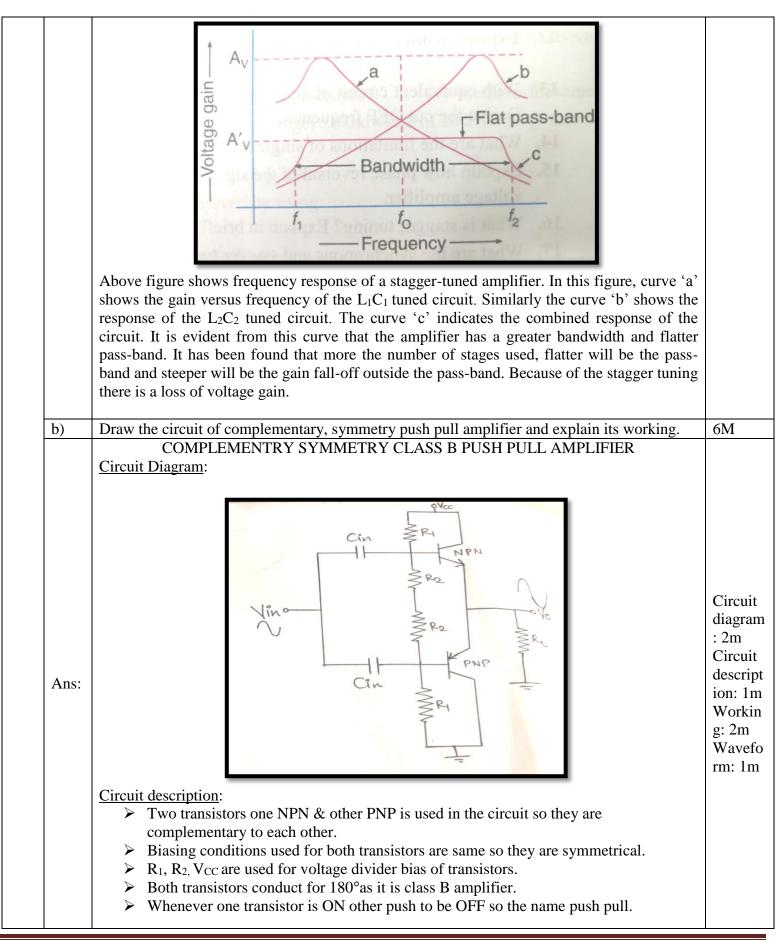
• In other words output voltage is 180 out of phase with the input voltage.


DURING NEGATIVE HALF CYCLE:

- As the gate to source voltage decreases, the drain current also decreases.
- As a result of this, the voltage drop across resistor R_D also decreases.
- This causes the drain voltage to increase. As $V_{DS} = V_{DD} I_D R_D$.
- It means that the negative half cycle of the input produces positive half cycle of the output voltage.
- In other words output voltage is 180 out of phase with the input voltage.

APPLICATIONS OF CS-FET AMPLIFIER:

- As a pre-amplifier in audio circuits.
- As a voltage amplifier.
- In the public address system.
- In radio & TV amplifier circuit.



		Waveform:	
		Class AB Amplifier Operation	
		Output Signal 0 Vce	
Q.6		Attempt any TWO of the following:	12- Total Marks
	a)	Explain stagger tuned amplifier with the help of waveforms.	6M
	Ans:	Circuit Diagram:VccR1C1VccR1C2C2L2VccR1C2C2C2L2VoutVinR2RECER2RECEAbove figure shows two-stage tuned voltage amplifier. The stagger tuning in this circuit, may be achieved by resonating the tuned circuits L1C1 and L2C2 to slightly different frequencies.	Circuit Diagra m: 2M Wavefo rm (Freque ncy Respon se): 2M Explain ation:2 M

	Working:	
	 Input signal V_{in} is applied to both the transistor through input capacitor. During positive half cycle of input: The base of the transistors NPN & PNP is positive. As a result of this NPN conducts & PNP remains OFF. So we get half cycle in the output. During negative half cycle of input: The base of the transistors NPN & PNP is negative. As a result of this PNP conducts & NPN remains OFF. So we get remaining half cycle in the output. 	
c)	In voltage amplifier output voltage without negative feedback is 10V. If 25% of output voltage its feedback in series with input voltage. Find Feedback voltage, also give value of the feedback factor.	6M
	 Given Data: V_{OUT} = 10V 25% of output voltage its feedback in series with input voltage. To find: Feedback voltage V_F Feedback factor β 	
	Solution: 1. Feedback voltage V _F : 25% of output voltage its feedback in series with input voltage. i.e. V _F = 25% of V _{OUT} V _F = 25% of 10V	Caculati on of feedbac k
Ans:	$V_{F} = 2.5V$ $V_{F} = 2.5V$ 2. Feedback factor β : $\beta = \frac{V_{F}}{V_{OUT}}$	voltage: 3m Caculati on of feedbac k
	$\beta = \frac{2.5V}{10V}$ $\beta = 0.25$	factor:3 m
	1. Feedback voltage $V_F = 2.5V$ 2. Feedback factor $\beta = 0.25$	