

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

(ISO/IEC - 2700 rtified)

WINTER – 19EXAMINATION

MAHARASHTI (Autonomous)

Subject Name: Applied Electronics Model Answer Subject Code:

22329

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer							
Q.1		Attempt	Attempt any FIVE of the following:						
	a)	List the ty	List the types of coupling used in BJT amplifier.						
	Ans:	Types of c i. Rea ii. Imp iii. Tra iv. Dir	 Fypes of coupling used in BJT amplifier: i. Resistance capacitance (RC)coupling ii. Impedance coupling iii. Transformer coupling iv. Direct coupling 						
	b)	Compare	small si	gnal amplifier w	ith power amplifier(an	y four)		2M	
	Ans:		Sr.No	Parameters Amplification quantity	Small signal Amplifiers It increases voltage into high resistance load. Hence small signal amplifiers are also called as	Power Amplifiers It increases power into low resistance load. Hence these amplifiers are also called as large		Any four points: each ½ M	
			2	Current Gain(β) Input Resistance(R _i)	voltage amplifiers. High(typically 100) Quite low	signal amplifiers. Low(5 to 20) Very large			
			4	Output	High	low			

			Impedance(R _o)				
		5	Physical size	Small	Large in size		
		6	Coupling	R-C coupling	Transformer		
					coupling		
		7	Power output	low	High		
c)	State four	advant	ages of negative f	eedback used in feedba	ack amplifier.		2M
Ans:	Advantag	es of ne	gative feedback:	(Any Four)			Each ½ M
	i. Dis	stortion of	decreases				
	ii. No	oise in ou	tput decreases				
	iii. Sta	ability of	gain of amplifier	improves			
	iv. It i	s used as	s an amplifier.				
	v. Op	erating p	point is stabilized.				
	vi. Inp	out resist	ance increases in o	certain configuration and	d output resistance de	ecreases in	
	cer	tain con	figurations.				
	vii. Ba	ndwidth	is increased				
d)	State Bar	khausen	criteria of oscilla	ation.			2M
Ans:	Where, Av	v = gain	of an amplifier wit	thout feedback also calle	ed open loop gain		1M
	$\beta A_V = pro$	oduct of	feedback fraction	and open loop gain. It is	called loop gain.		
	The Bark	hausen c	riterion for the ge	neration of sustained os	cillations. for positive	e feedback	
	are:						
	1. βA	$\Lambda = 1$					1M
	2. To	tal phase	e shift should be 30	$50^{\circ} \text{ or } 0^{\circ}$			
e)	Differenti	ate posi	tive feedback and	l negative feedback (fo	ur points)		2M
Ans:	Sr.	Parame	eter	Positive feedback	Negative feedback		Any Four
	No.						points
	1	T 11		T 1 1 1 1 1			Each ½ M
	1	Feedba	ack signal	In phase with the input	180° out of phase	1	
				signal.	with the input sign	ial.	
	2	Net inp	out signal	Increases	Decreases		
	3	Gain		Increases	Decreases		
	4	Noise 1	Increases	Increases	Decreases		
	5	Stabilit	ty	Poor	Improved		
	6	Input i	mpedance	decreases	increases		
	7	Output	impedance	increases	decreases		
	8	Uses		Oscillators, Schmitt	Amplifiers,		
	1			4	1		
				trigger	bootstrapping		

f)	State the need of tuned amplifier in electronic circuits.(four points)			
Ans:	(Note: Any two points can be given full marks) Need of tuned amplifier: i. Selects the desired radio frequency signal. ii. Amplifies the selected high or radiosignal to a suitable voltage level. iii. As a filter.			
g)	List the uses of heat sink (four points)	2M		
Ans:	Uses of heat sink:	Each		
	i. It is used to avoid thermal runaway in electronic circuits.	point		
	ii. Use to transfer heat generated by a mechanical or an electronic device to the surroundings.	1⁄2 M		
	iii. Use to optimize the heat exchange between component and surrounding by maximizing the contact surface between heat sink and air.			
	iv. Used to dissipate the amount of heat generated.			

0.2		Attempt any THREE of the following:							
Q.2		Attempt any THREE of the following:	Marks						
	a)	Explain the working principle of FET amplifier and list its two applications.	4M						
	Ans:	Circuit diagram:							
		$\left \begin{array}{c} R_{1} \\ R_{D} \end{array} \right _{L_{D}}$	$1 \frac{1}{2}M$						
		$\bigvee \geq R_2 \geq R_s + C_s$							
		Explanation:							
		i. When small a.c. signal is applied to the gate, it produces variation in the gate to	1 ½M						
		source voltage. This produces variation in the drain current. As the gate to							
		source voltage increases, the drain current also increases. As the result of this							
		voltage drop across R_D also increases. This causes the drain voltage to							
		decreases.							
		ii. As the input voltage rises, gate to source voltage becomes less negative, it will							
		increase the channel width and increase the level of drain current I_D .							
		iii. As the input voltage falls, it will decrease the channel width and decrease the							
		level of drain current I _D . Thus I _D varies sinusoidally above its Q point value.							
		iv. The drain to source voltage V_{DS} is given by $V_{DS} = V_{DD} - I_D R_D$							
		v. Therefore as I_D increases the voltage drop I_DR_D will also increase and voltage							
		V _{DS} will decrease.							
		vi. If ΔI_D is large for a small value of ΔV_{GS} ; the ΔV_{DS} will also be large and we get							
		amplification. Thus the AC output voltage V_{DS} is 180° out of phase with AC							

MAHAR (Autonom (ISO/IEC	RASHTI nous) C - 2700 BOARD OF TECHNICAL EDUCATION rtified)	
	input voltage.	
	Applications: (Any 2)	1M
	i. Low noise amplifier	(1/2 M
	ii. Buffer amplifier	each)
	iii. Cascade amplifier	
	iv. Analog switch	
	v. Multiplexer	
	vi. Chopper	
	vii Current limiter	

Compare the performance of voltage series and current series type of negative **4**M b) feedback amplifiers.(four points)

Ans:	Sr.No	Parameters	voltage series negative feedback amplifiers	current series type negative feedback amplifiers	o A ny fo c point Each p	our
	1	Block diagram	$ \begin{array}{c} + \\ V_{s} \\ - \\ - \\ V_{i} \\ - \\ - \\ V_{i} \\ - \\ - \\ V_{i} \\ - \\ - \\ - \\ \end{array} $	Vin Op-amp	-1M	
	2	Gain	Decreases	Decreases		
	3	Output resistance	Decrease $Z_{if} = \frac{ZI}{1 + \beta A}$	Increase Z _{if} =Z _i (1+βA)		
	4	Input resistance	Increases $Z_{if}=Z_i(1+\beta A)$	Increase $Z_{if}=Z_i(1+\beta A)$		
2)	5	Disortion	Decrease	Decrease		
Ans:	Diagrar	n:		цис.	2M	

2M

4M

Circuit

diagram 1M BOARD OF TECHNICAL EDUCATION

MAHARASHTI (Autonomous)

MAHARASHTI (Autonomous) (ISO/IEC - 2700

Q.3		Attempt any THREE of the following:	12-Total Marks					
	a)	Classify the power amplifiers on the basis of operation and input/output waveforms.						
	Ans:	 Depending upon the operation and input/output waveforms power amplifiers are classified into following type. 1) Class A amplifier. 2) Class B amplifier. 3) Class C amplifier. 4) Class AB amplifier. 5) Class D amplifier. 	Any 4 types 1M each					
	b)	Describe the operation of class-C type of power amplifier with the help of neat sketch.	4M					
	Ans:	 Circuit diagram: Circuit diagram: Operation: Class C power amplifier is a type of amplifier where the transistor conducts for less than one half cycle of the input signal. Less than one half cycles means the conduction angle is less than 180° and its typical value is 80° to 120°. Biasing resistor R_b pulls the base of Q₁ further downwards and the Q-point will be set below the cut-off point in the DC load line. As a result the transistor will start conducting only after the input signal amplitude has risen above the base emitter voltage (Vbe~0.7V) plus the downward bias voltage caused by R_b. That is the reason why the major portion of the input signal is absent in the output signal. Inductor L₁ and capacitor C₁ forms a tank circuit which is used in the extraction of the required signal from the pulsed output of the transistor. Values of L1 and C₁ are so selected that the resonant circuit oscillates in one frequency (generally the carrier frequency) all other frequencies are attenuated. 	2M 2M					
	c)	Justify the need of current time base generator to obtain the specified sawtooth waveform with one example.						
	Ans:	 Justification:- Current Time base generator is a circuit where the output current is a linear function of time over a specified time interval. Time base circuits are used by radar systems to determine range to a target, by comparing the current location along the time base to the time of arrival of radio 	Justification 2M, Waveform					

Example:

- A cathode ray tube (CRT) consists of three primary parts, the electron gun that provides a stream of accelerated electrons, the phosphor-covered screen that lights up when the electrons hit it, and the deflection plates that use magnetic or electric fields to deflect the electrons in-flight and allows them to be directed around the screen.
- It is the ability for the electron stream to be rapidly moved using the deflection plates that allow the CRT to be used to display very rapid signals.
- To display such a signal on an oscilloscope for examination, it is desirable to have the electron beam sweep across the screen so that the electron beam cycles at the same frequency as the carrier, or some multiple of that base frequency.
- This is the purpose of the current time base generator, which is attached to one of the set of deflection plates, normally the X axis, while the amplified output of the radio signal is sent to the other axis, normally Y. The result is a visual re-creation of the original waveform.

Fig: A current time base circuit.

		However the current IADJ is very small and constant. Therefore the voltage drop across R2 due to IADJ is also very small and can be neglected. Therefore	
		$V_0=1.25.(1+\frac{R_1}{R_2})$ The output is a function of R ₁ for a given value of R ₂ and can be varied by adjusting the value of R ₁ . The resistor R ₂ usually is 240 ohm. Normally no capacitor is needed unless the LM317 is situated far from the power supply filter capacitor.	Output equation- 1M
.4		Attempt any THREE of the following :	12-Total Marks
	a)	Draw the two stage BJT amplifier. State the formula for overall gain of this amplifier.	4M
	Ans:	Diagram: V_{cc} $R_1 \neq R_{c1} = R_{c2} = R_$	31/1
		Let Av_1 -Voltage gain of first amplifier Av_2-voltage gain of second amplifier Overall voltage gain. $Av = Av_1 * Av_2$	Formula 1M
	b)	Draw the circuit diagram of class AB power amplifier and describe its working.	4M
	Ans:	Circuit diagram:	Formula 1M 4M 2M
		r_{z} r	2M
		Circuit Description:	
		The circuit consists of two center-tapped transformers T_1 and T_2 , two identical transistors Q_1 and Q_2 , Resistor R and diode D. The DC voltage developed across the diode D is connected to the bases of both the transistors through the secondary winding	

c)		
``	foodbook omplifior	4M
	 phase with each other. V_{CC} is tied to the transistor collectors through the centre tapped output transformer T₂. R_e is stabilized resistor. When positive half cycle of the input signal is applied, the base of Q₁ becomes positive and base of Q₂ negative. Therefore Q₁ is ON and Q₂ is OFF. As transistors Q₁ and Q₂ are biased just above cut off. Therefore as positive input cross zero, collector current ic₁ starts flowing through Q₁, through transformer T₂ as shown and ic₂ = 0. A positive sinusoidal voltage will appear across load. When negative half cycle is applied across input the base of Q₁ becomes negative while the base of Q₂ is positive. Therefore Q₁ is off and Q₂ conduct, as soon as input cross zero, negative sinusoidal voltage will appear across load. With the help of neat circuit diagram, explain the operation of voltage shunt type 	
	• Resistor R_1 , R_2 are chosen to provide biasing to the transistors Q_1 , Q_2 , input transformer T_1 provides phase splitting function in which two voltages are out of	
	Vin Vin Q1 ist T2 Vin Q2 Vcc Q2 Circuit operation:-	
	OR Circuit diagram:-	
	 equal to cut-in voltage and they will conduct for complete half cycleperiod of the input to eliminate the cross-over distortion. WORKING: WORKING: When there is no a.c. input signal is applied both the transistors Q₁& Q₂ are cut off. Hence no current is drawn from VCC. DURING POSITIVE HALF CYCLE: The base of the transistor Q₁ is positive and that of Q₂ is negative. iii. As a result of this Q₁ conducts, while the transistor Q₂ is OFF. ¬ DURING DURING NEGATIVE HALF CYCLE: The base of the transistor Q₂ is positive and that of Q₁ is negative. iii. As a result of this Q₂ conducts, while the transistor Q₁ is OFF. The base of the transistor Q₂ is positive and that of Q₁ is negative. 	2M

	Fig. show between it signal is a (out of phi- Hence $I_F = \frac{V_b - V_b}{R_F}$ $\therefore V_b << V$ $\therefore I_f = -$ Thus if we therefore in negative f	is comm ts outpu pplied to ase with the feed $\frac{V_o}{R_F}$ e reduce it is volta eedback	on emitter transistor amplifier v t and input terminals. This is control to the input then amplified output input) with the input. back current is given by – the output voltage to zero then f age feedback. As $I_S = I_f + I_i$ it is a amplifier.	Free R_{e} R_{e} R_{e} C_{e} R_{e} C_{e} V_{O} V_{O} is produced with 180 ⁰ pha V_{O} is produced with 180 ⁰ pha eedback voltage will reduce to shunt type therefore it voltage s	nnected e input se shift zero, shunt	Explanatio n 2M
 d)	Compare	betwee	n RC phase shift oscillator and	crystal oscillator.		4M
Ans:	(Note: Any other relevant point also can be considered.)					
		Sr. No.	RC phase shift oscillator	Crystal oscillator		1M
		1	This oscillator is used for low frequency range.	Quartz crystal is mainly used in radio-frequency (RF) oscillators		each point
		2	Used resistor and capacitor network to decide frequency of oscillator.	Crystal decides the frequency of oscillator.		
		3	RC phase shift oscillators are comparatively less stable.	crystal oscillators are highly stable		
		4	RC network is used as feedback network.	Crystal is connected in feedback.		
e)	Compare the fixed voltage regulators using 78XX and 79XX.(any four points)					
Ans:	(Note: Ar	ny other	relevant point also can be cons	sidered.)		1M each

Sr. point 78xx 79xx No. It produces positive fixed It produces negative 1 DC voltage values, fixed DC voltage values IC 79xx (7905, IC 78xx (7805, 7806, 7808, 7906,7908,7912, 7915) -2 7812, 7815, 7818, 7824)-Negative Voltage Positive Voltage Regulator. Regulator 3 Output current is 1A Output current is 1.5A IC 3 IC 79XX Output Input 78XX Output Input 1 2 Ground 4 Ground OR OR 1-Input 1-Ground 2-Ground 2-Input 3-Output 3-Output Q.5 Attempt any TWO of the following 12 Total Marks Describe the operation of double tuned amplifier with the help of neat circuit **6M (a)** diagram and mention its applications. **Circuit diagram: 2M** Ans: /cc CC R-**Operation:** The signal to be amplified is applied at the input terminal through the coupling ٠ $2\mathbf{M}$ capacitor C_C The resonant frequency of the tuned circuit $L_1 C_1$ is made equal to that of tuned • circuit L₂ C₂ Under these conditions the tuned circuit offers avery high impedance to the input • signal. As a result of this, a large output appears across the tuned circuit L_1C_1 which is inductively coupled to the L_2C_2 tuned circuit. 1M each **Applications:**(any two) (i) Radio and T.V broadcasting as tuning circuit.

دلأثاد

MAHARASHTF

(ISO/IEC - 2700

(Autonomous)

BOARD OF TECHNICAL EDUCATION

		2. In public address systems (PA system)							
		 In tape recorders and music system In T.V receivers 							
		4. In 1. Viecelvels							
	(c)	applications.							
	Ans:	Circuit Diagram:							
		R_{B2} C R_{C} V_{O} V_{O} Q_{2}							
		 Applications (Any Two): In Television (TV) In CRO To convert step waveform into ramp waveform. 	1M each						
Q.6		Attempt any TWO of the following:	12Total Marks						
	(a)	For a BJT ac amplifier, with a midband voltage gain of 200, if the cutoff frequencies are f_1 =20Hz and f_2 =20KHz.Draw the frequency response for amplifier.	6М						
-	Ance	Draw the frequency response in case of find gain of 100 and 11–500112 to 12–518112.	3M						
	Alls.	(i) Frequency response for amplifier with mid-band voltage gain of 200, if the cutoff frequencies are $f_1=20$ Hz and $f_2=20$ KHz.	3141						
		(ii) Erequency response for amplificr with mid-band voltage gain of 100 if							
		(ii) Frequency response for amplifier with mid-band voltage gain of 100, if the outoff frequencies are f_{1} = 500Hz and f_{2} = 5KHz							
		the cuton frequencies are r_1 -sound and r_2 = sknz.	3М						

(Autonomous) (ISO/IEC - 2700

MAHARASHTI

