

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

BOARD OF TECHNICAL EDUCATION MAHARASHT (Autonomous) (ISO/IEC - 2700

rtified)

SUMMER-19 EXAMINATION

Subject Name: **Basic power electronics** Model Answer Subject Code: 22427

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- The model answer and the answer written by candidate may vary but the examiner may tryto assess the 2) understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
1	(A)	Attempt any FIVE of the following:	10- Total Marks
	(a)	Define holding and latching current	2M
	Ans:	 Latching current: It is the minimum anode current required to maintain the SCR in the conduction state, even when the gate signal has been removed. Holding current: It is the minimum anode current required to hold the SCR in the ON state. When the anode current goes below the holding current, the device will go to OFF state. 	1M 1M
	(b)	Draw the symbol of IGBT and PUT.	2M
	Ans:	$Gate(G) \qquad Gate(G) \qquad Gate$	Each Symbol 1 M

SUMMER-19 EXAMINATION

Subject Name: **Basic power electronics** Model Answer Subject Code: 22427

(c)	List different turn-on methods of SCR.	2M
Ans:	Forward voltage triggering	2M
	➤ dv/dt triggering.	
	> Temperature triggering	
	Light/illumination /radiation triggering.	
	> Gate triggering	
(d)	State the use of freewheeling diode in controlled rectifier.	2M
Ans:	Load current becomes continuous i.e. ripple free.	Each
	• It prevents reversal of load voltage and hence gives more average d.c utput voltage.	point ½ marks
	Input power factor is improved.	
	• It prevents transfer of reactive power from load to supply.	
e)	List two applications of inverter.	2M
Ans:	Two applications of inverter: (Any two)	1 M
	 Uninterrupted power supply. 	Each
	AC motor speed controller.	
	 Centrifugal fans and pumps. 	
	Conveyors.	
	 Induction heating. 	
	Aircraft power supply	
	High voltage DC transmission lines	
	Note: Any other relevant applications should be considered.	
f)	Define Chopper. State its types.	2M
Ans:	Definition:	1M
	A chopper is a static device that converts fixed dc voltage to a variable dc voltage.	
	Types:	
	• Step up chopper	1M
	 Step down chopper 	
		1

Model Answer Subject Code:

Q. No.	Sub Q. N.	Answers	Marking Scheme
2		Attempt any THREE of the following:	12- Total Marks
	a)	Describe with neat sketch the V-I characteristics of TRIAC.	4M
	Ans:	V-I characteristics of TRIAC: I = I = I = I = I = I = I = I = I = I =	V-I characte ristics - 2M

 Subject Name:
 Basic power electronics
 Model Answer
 Subject Code:

	Description:	
	TRIAC characteristics lie in two quadrants as shown in the figure above. Graphs for mode1 & mode 2 lie in the first quadrant while mode3 & mode 4 in fourth quadrant. Both the graphs are identical. Each graph can be divided into 2 regions as below,	2M
	 Blocking region (OFF state): In the first quadrant, when MT2 is made positive w.r.t. MT1 with a positive or negative gate current, the graph lies in the first quadrant. Initially, till the breakover voltage of the device is applied, only a small leakage current flows indicated by the region OA. Conduction region (ON state): After the breakover voltage(VB01) is applied, the device goes into conduction with a sharp increase in current but with a considerable reduction in the voltage across the device. This region of the graph is indicated by the region AB. 	
b)	Describe with circuit diagram the operation of battery charger using SCR.	4M
Ans:	Circuit Diagram:	2M – circuit diagra
	$\begin{array}{c c} & & & & & & \\ \hline & & & & & \\ \hline & & & & \\ \hline & & & &$	
	 Working: The figure above shows battery charger circuit using SCR. A 12V discharged battery is connected in series with an SCR T1. The single-phase 230V supply is stepped down to (15-0-15) V by a centre-tapped transformer. 	
	 The diodes D1 and D2 provide full wave rectified output across the SCR, T1 and the battery to be charged. R3 –D3 provide trigerring circuit for T1. AS T1 is ON battery starts charging. 	2M - workir

Subject Name: Basic power electronics <u>Model Answer</u> Subject Code:

MAHARASHT (Autonomous) (ISO/IEC - 2700 : tified)

Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any THREE of the following :	12- Total Marks
	a)	Explain class B commutation with neat circuit diagram.	4M

MAHARASHT (Autonomous) (ISO/IEC - 2700 CBOARD OF TECHNICAL EDUCATION rtified)

SUMMER-19 EXAMINATION

 Subject Name:
 Basic power electronics
 Model Answer
 Subject Code:

Subject Name: Basic power electronics <u>Model Answer</u> Subject Code: **2**

	(i)	Average dc output voltage	
	(ii)	Load current for the load resistance of 100 Ω	
Ans:	Given: V= 230 sin	314 t	Average output voltage :
	$\alpha = 30^{\circ}$		2111
	R _L = 100 Ω		Load current :
	Required:		2M
	Vdc = ?		
	I _L = ?		
	Solution:		
	Average o	utput voltage = $\frac{Vm}{\pi}$ (1 + cos α)	
		$=\frac{230}{\pi}(1+\cos 30)$	
		= 73.211 * 1.866 = 136.6 V	
	Load curre	ent $I_{L} = \frac{Vdc}{RL} = \frac{136.6}{100} = 1.366 \text{ A}$	
c)	Draw circuinput out	uit diagram of step up chopper. State its output voltage expression and draw its put wave forms.	4M
Ans:	Circuit dia		Circuit diagram : 2M Output voltage expressi on: 1M Wavefor ms : 1M
	Output vo	Itage expression	

 Subject Name:
 Basic power electronics
 Model Answer
 Subject Code:

• Fig. above shows a simple emergency lighting circuit. The 230v ac supply is applied as input. Supply is stepped down using a Center tapped transformer. The full wave rectifier converts ac to dc voltage.
• When supply is ON, voltage appears across it and the lamp glows. Pulsating current also flows through D3 & R1 to charge the battery. Thus battery charging is carried out.
• The capacitor C gets charged with upper plate positive to some voltage less than secondary voltage of transformer. Due to capacitor voltage, gate cathode junction of SCR1 gets reverse biased. The anode is at battery voltage & cathode is at rectifier output voltage, which is slightly higher, hence SCR1 is reverse biased & cannot conduct. The lamp glows due to rectifier output dc voltage.
• If power fails, the capacitor C discharges through D3, R1 & R3 until the cathode of SCR, is less positive than anode. At the same time the junction of R2 & R3 becomes positive & establishes a sufficient gate to cathode voltage to trigger the thyristor. Once the thyristor turns ON, the battery discharges through it, & turns the lamp ON. When power is restored, the thyristor is connected & commutated & capacitor C is recharged.

	1		
Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
4		Attempt any THREE of the following :	12- Total
			Marks
	(a)	Explain with circuit diagram the operation of class C commutation.	4M
	• •		
	A	Circuit Diagram	Circuit
	Alls.		
			diagram
			: 2M
			working
		$R_L \leq R$: 2M
		\pm T $_{-11+}$	
		SCR2 V	
		SCR1 Ig Ig	
		Working:-	
		• At first, when the SCR1 is triggered load current flows IL starts flowing through (Vdc+	
	I		L]

BOARD OF TECHNICAL EDUCATION

rtified)

MAHARASHT Autonomous)

(Autonomous) (ISO/IEC - 2700

SUMMER-19 EXAMINATION

Subject Name: Basic power electronics <u>Model Answer</u>Subject Code:

	 RL, SCR1, Vdc-). At the same time, capacitor 'C' will charge through Vdc+, R, C, SCR1, Vdc- with right side plate positive. When it is fully charged to Vs charging current becomes zero. To turn off SCR1, SCR2 is triggered. When SCR2 is turned ON the reverse voltage across 'C' is applied across SCR1, turning 	
	 it OFF. Now capacitor will start charging through Vdc+, RL, C, SCR2, Vdc- with left side plate positive. Similarly, as SCR1 is turned ON the reverse voltage across 'C' is applied across SCR2, turning SCR2 OFF. 	
(b)	Note: Waveform is optional. Describe the operation of single phase half wave controlled rectifier with RL load.	4M
Ans:	Circuit diagram: $\begin{array}{c} RL-LOAD \\ \hline K+X+H \\ \hline V \\ V \\$	Circuit diagram : 1M Working : 2M Wavefor ms : 1M

Working:

- During positive half cycle of input voltage, thyristor T is forward biased but it does not conduct until gate signal is applied to it.
- When a gate signal is given to thyristor T at wt = α, it gets turned ON and begins to conduct.
- When thyristor is ON the input voltage is applied to the load, but due to the inductor present in the load, current through load builds up slowly.
- During negative half cycle of input voltage, thyristor T is reverse biased but current through thyristor is not zero due to inductor.
- The current through inductor slowly decays to zero.
- So here thyristor will conduct for some time during the negative half cycle and turns OFF at wt = β .
- Now the load receives voltage during positive half cycle and for a small duration in negative half cycle.
- The average value of voltage can be varied by varying firing angle α.

Subject Name: Basic power electronics Model Answer

_Subject Code:

Subject Name: Basic power electronics <u>N</u>

Model Answer Subject Code:

 Subject Name:
 Basic power electronics
 Model Answer
 Subject Code:

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
5.		Attempt any TWO of the following:	12- Total
			Marks
	2)	Explain with sketch the operation of power MOSEET	6M
	aj		
	Ans:		2 marks,
		Circuit diagram:	V-I
		(Structure of power MOSFET as shown below or any other equivalent can be considered)	characte
			ristics:
		G	2 marks, Operati
		Saurce Saurce	on:
		myersion P mint mt	2marks
		layer n-	
		sit	
		Drain	
		Fig()	
		V-I characteristics:	
		In 2 chimic Saturation	
		D I	
		Is Taka	
		VGS2	
		Vesi	
		Cut-off Ds	
		VT Vas Region	
		characteristice (1) Sulphe charactershi	
		Operation:	
		Figure 1 shows the construction of N – channel power MOSFET	

Subject Name: Basic power electronics <u>Model Answer</u>Subject Code:

MAHARASHT Autonomous) BOARD OF TECHNICAL EDUCATION rtified)

(Autonomous) (ISO/IEC - 2700

SUMMER-19 EXAMINATION

Subject Name: Basic power electronics Model Answer Subject Code:

	Edc voltage through resistance R.	2marks
	• As soon as capacitor voltage reaches up to peak point (Vp) voltage, the PUT turns on	
	& the capacitor discharges. A positive going pulse is produced across Rs resistor as	
	amplitude of the pulse is slightly lower than the capacitor peak voltage due to anode	
	cathode 'ON' voltage of 1V.	
	• The peak point voltage (Vp =Vg+ 0.5) is set by the voltage divider consisting of the	
	two resistors R1 & R2.	
	• The voltage at gate remains at Vg volts, the potential on the capacitor reaches the	
	peak point voltage, PUT turns ON Vg drops to approximately zero and the capacitor	
	discharges.	
	When the discharging current of capacitor falls below the valley current PUT turns	
	OFF & gate voltage returns to Vg volt.	
c)	Explain the operation of three phase half wave controlled rectifier with circuit diagram and	6M
-,	also sketch its input and output waveform	
Ans:		2marks
	Circuit diagram:	
	T	
	A	
	A N C I N	
	E Konkol	
	39 6 3 NK R T	
	a.col S Consolit	
	il front to	
	Pet the	
	T3	
	Operation	
		2 marks
	• The 3-phase input supply is applied through the star connected supply transformer as shown	
	in the figure. The common neutral point of the supply is connected to one end of the load	
	while the other end of the load connected to the common cathode point	
	• When the SCR T ₁ is triggered at $\omega t = (\Pi/6 + \alpha) = (30^\circ + \alpha)$, the phase voltage V _{an} appears across	
	the load when T_1 conducts. The load current flows through the supply phase winding 'A-	
	N' through SCR T_1 as long as T_1 conducts.	
	• When SCR T ₂ is triggered at $\omega t = (5 \prod / 6\alpha)$, T ₁ becomes reverse biased and turns-off. The load	
	current flows through the SCR and through the supply phase winding 'B-N'. When	
	T_2 conducts the phase voltage v_{tra} appears across the load until the SCR T_2 is triggered.	
	• When the SCR T ₃ is triggered at $\omega t = (3 \prod / 2 + \alpha) = (270^{\circ} + \alpha)$, T ₂ is reversed biased and hence	
	• When the SCR T ₃ is triggered at $\omega t = (3 \prod/2 + \alpha) = (270^{\circ} + \alpha)$, T ₂ is reversed biased and hence T ₂ turns-off. The phase voltage V _{cn} appears across the load when T ₃ conducts.	

MAHARASHT (Autonomous) (ISO/IEC - 2700 CBOARD OF TECHNICAL EDUCATION rtified)

Q. No.	Sub Q. N.	Answers	Marking Scheme
6.		Attempt any TWO of the following :	12- Total Marks
	a)	Explain with neat circuit diagram the operation of parallel inverter.	6M
	Ans:	Circuit diagram: $ \begin{array}{c} $	2 marks
		Operation:	

MAHARASHT (Autonomous) (ISO/IEC - 2700 CBOARD OF TECHNICAL EDUCATION rtified)

MAHARASHT (Autonomous) (ISO/IEC - 2700

SUMMER-19 EXAMINATION

Subject Name: Basic power electronics <u>Model Answer</u>Subject Code: 2

	Effect of gate current on break over voltage of SCR:	VI characto ristics 3 marks
	VRBP IH Jan	Explana ion 3marks
	 The voltage at which the SCR comes into conduction without any gate current (Ig=0) is called break over voltage Vac 	
	 The voltage at which the SCR comes into conduction without any gate current (Ig=0) is called break over voltage V_{BO}. By the application of minimum required gate current (Ig₁), SCR can be turned on before the break over voltage. If we increase the gate current (Ig₂) with in the specified limits SCR can be turned ON at a voltage much lesser than the break over voltage. So by increasing the gate current (Ig₂>Ig₁>Ig₀) we can turn on the SCR at smaller voltages. Once SCR is latched to ON state, gate loses its control unless and until current through SCR is not reduced below holding current or voltage across SCR is reversed, SCR will keep conducting. 	
c)	 The voltage at which the SCR comes into conduction without any gate current (lg=0) is called break over voltage V_{BO}. By the application of minimum required gate current (lg₁), SCR can be turned on before the break over voltage. If we increase the gate current (lg₂) with in the specified limits SCR can be turned ON at a voltage much lesser than the break over voltage. So by increasing the gate current (lg₂>lg₁>lg₀) we can turn on the SCR at smaller voltages. Once SCR is latched to ON state, gate loses its control unless and until current through SCR is not reduced below holding current or voltage across SCR is reversed, SCR will keep conducting. 	6M

Subject Name: Basic power electronics <u>Model Answer</u> Subject Code:

MAHARASHT (Autonomous) (ISO/IEC - 2700 CBOARD OF TECHNICAL EDUCATION rtified)

SUMMER-19 EXAMINATION

 Subject Name:
 Basic power electronics
 Model Answer
 Subject Code:

