

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

MAHARASHT (Autonomous) (ISO/IEC - 2700 :tified)

SUMMER-19 EXAMINATION

Subject Name: Digital technique

Model Answer

Subject Code:

22320

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers									
1	(A)	Attempt any FIVE of th	Attempt any FIVE of the following:								
	(a)	List the binary,octal ar	List the binary,octal and hexadecimal numbers for decimal no. 0 to 15								
	Ans:					2M					
		DECIMAL	BINARY	OCTAL	HEXADECIMAL						
		0	0000	0	0						
		1	0001	1	1						
		2	0010	2	2						
		3	0011	3	3						
		4	0100	4	4						
		5	0101	5	5						
		6	0110	6	6						
		7	0111	7	7						
		8	1000	10	8						

SUMMER-19 EXAMINATION

Model Answer

_Subject Code:

	9	1001	11	9	
	10	1010	12	A	
	11 1011 12 1100		13	В	
			14	С	
	13	1101	15	D	
	14	1110	16	E	
	15	1111	17	F	
(b)	Define fan-in and fan-ou	t of a gate.		<u> </u>	2M
	some have more than tw	o. A typical logic g	ate has a fan-in of 1 o	1 2.	
	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates.	o. A typical logic ga fines the maximun . Most transistor-t	ate has a fan-in of 1 o n number of digital in ransistor logic (TTL) (puts that the output c gates can feed up to 1	of a LO 1M
(c)	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch	ro. A typical logic ga fines the maximun . Most transistor-t ronous and async	n number of digital in ransistor logic (TTL) ; hronous counter (an	puts that the output o gates can feed up to 1 y two points).	of a LO 1M 2M
(c) Ans:	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch	o. A typical logic ga fines the maximun Most transistor-t ronous and async	n number of digital in ransistor logic (TTL) (puts that the output o gates can feed up to 1 y two points).	of a LO 1M 2M
(c) Ans:	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch	ro. A typical logic ga fines the maximun Most transistor-t ronous and async	n number of digital in ransistor logic (TTL) (chronous counter (an Asynchronou	puts that the output of gates can feed up to 1 y two points).	of a 10 2M Any t
(c) Ans:	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch Synchronous C All flip flops are	ro. A typical logic ga fines the maximun . Most transistor-t ronous and async ounter triggered	n number of digital in ransistor logic (TTL) g hronous counter (an Asynchronou Different clock	puts that the output of gates can feed up to 1 y two points).	of a LO 1M 2M Any t 1M
(c) Ans:	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch Synchronous C All flip flops are with same clock	ro. A typical logic ga fines the maximun . Most transistor-t aronous and async ounter triggered	Ate has a fan-in of 1 o n number of digital in ransistor logic (TTL) (chronous counter (an Asynchronou Different clock different flip f	puts that the output of gates can feed up to 1 y two points).	of a 10 2M Any t 1M for ea comp
(c) Ans:	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch Synchronous C All flip flops are with same clock It is faster.	o. A typical logic ga fines the maximun Most transistor-t ronous and async ounter triggered	Asynchronou Different clock different flip f It is lower	puts that the output of gates can feed up to 1 y two points).	of a LO 1M 2M Any t 1M for ea comp son
(c) Ans:	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch Synchronous C All flip flops are with same clock It is faster. Design is comple	ro. A typical logic ga fines the maximun Most transistor-t ronous and async ounter triggered	Asynchronou Different clock different flip f It is lower I Design is rel	puts that the output of gates can feed up to 1 y two points). Is Counter < is applied to lops. atively easy.	of a 10 2M Any t 1M for ea comp son
(c) Ans:	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch Synchronous C All flip flops are with same clock. It is faster. Design is comple Decoding errors	o. A typical logic ga fines the maximun Most transistor-t ronous and async ounter triggered ex. not present.	Asynchronou Asynchronou Different clock different flip f It is lower I Design is rel Decoding erro	puts that the output of gates can feed up to 1 gates can feed up to 1 y two points).	of a LO 2M Any t 1M for ea comp son
(c) Ans:	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch Synchronous C All flip flops are with same clock It is faster. Design is comple Decoding errors Any required sec	o. A typical logic ga fines the maximum Most transistor-t ronous and async ounter triggered ex. not present. quence can	Asynchronou Asynchronou Different clock different flip f It is lower I Design is rel Decoding erro Only fixed sec	puts that the output of gates can feed up to 1 gates can be gates can feed up to 1 gates can be gates can	of a 10 2M Any t 1M for ea comp son

BOARD OF TECHNICAL EDUCATION

SUMMER-19 EXAMINATION

Model Answer

Subject Name: Digital technique

_Subject Code:

(d)	State two specification of DAC.	2M
Ans:	1.Resolution:	Any
	Resolution is defined as the ratio of change in analog output voltage resulting from a	two
	change of 1 LSB at the digital input VFS is defined as the full scale analog output	1M
	Voltage i.e. the analog output voltage when all the digital input with all digits 1. Posolution = $VES /(2n - 1)$	each
	2. Accuracy:	
	Accuracy indicates how close the analog output voltage is to its theoretical value. It indicates	
	the deviation of actual output from the theoretical value. Accuracy depends on the accuracy	
	of the resistors used in the ladder, and the precision of the reference voltage used. Accuracy	
	is always specified in terms of percentage of the full scale output that means maximum	
	output voltage	
	3. Linearity:	
	I he relation between the digital input and analog output should be linear.	
	resistive networks	
	4. Temperature sensitivity:	
	The analog output voltage of D to A converter should not change due to changes in	
	temperature.	
	But practically the output is a function of temperature. It is so because the resistance values	
	and OPAMP parameters change with changes in temperature.	
	5. Settling time:	
	The time required to settle the analog output within the final value, after the change in	
	digital input is called as settling time.	
	6 Long term drift	
	Long term drift are mainly due to resistor and semiconductor aging and can affect all the	
	characteristics.	
	Characteristics mainly affected are linearity, speed etc.	
	7. Supply rejection	
	Supply rejection indicates the ability of DAC to maintain scale, linearity and other important	
	characteristics when the supply voltage is varied.	
	Supply rejection is usually specified as percentage of full scale change at or near full scale	
	voltage at 250e	
	t is defined as the time needed to perform a conversion from digital to analog. It is also	
	defined as the number of conversions that can be performed per second	

(

ubject	Name: Digital technique	SUMMER-19 EXAMINATIOI Model Answer	N _Subject Code:	22320	
e)	Write the gray code to	given no.(1101) ₂ =(?) Gray.			2M
Ans:	11 - EX-OR	EX-OR EX-OR	Binary Co	ode	2M
	1 0	1 1	Gray Co	de	
f)	Define encoder, write th	ne IC number of IC used asdecimal	I to BCD encoder.		2M
Ans:	An encoder is a device o another, for the purpose	r circuit that converts information of standardization, speed or comp	from one format or pression.	code to	Defina on-1N
	Decimal to BCD encoder	- IC- 74147			IC-1M
g)	Draw the logical symbol	ofEX-OR and EX-NOR gate.			2M
Ans:	EX-OR GATE:-	$\hat{A} \longrightarrow Out \\ B \longrightarrow A$	$A \cdot \overline{B} + \overline{A} \cdot B$ $\cdot B + \overline{A} \cdot \overline{B}$		EX-OR 1M EX-NC 1M
					ı
Sub Q. N.		Answers			Marki

No.	Q. N.		Scheme
2		Attempt any THREE of the following:	12- Total Marks

a)	Converte	454
a)	Convert:	4171
	(i) $(AD92.BCA)_{16} = (?)_{10} = (?)_8 = (?)_2$	
Ans:	(AD92.BCA) ₁₆	1.5N
	$= (10 \times 16^{3}) + (13 \times 16^{2}) + (9 \times 16^{1}) + (2 \times 16^{0}) + (11 \times 16^{-1}) + (12 \times 16^{-2}) + (10 \times 16^{-3})$	
	= 40960 + 3328 + 144 + 2 + 0.6857 + 0.046875 + 0.00244	
	= (44434.7368) ₁₀	1M
		1.5N
	(AD92.BCA) ₁₆ =(1010 1101 1001 0010.1011 1100 1010) ₂	
	(AD92.BCA) ₁₆ = (1010 1101 1001 0010.1011 1100 1010) ₂	
	=(001 010 110 110 010 010.101 111 001 010) ₂	
	=(126622.5712) ₈	
	Note: any other method can be considered.	
b)	Simplify the following and realize it	4M
	$Y = A + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + ABC + \overline{A}\overline{B}$	
Ans:	$Y = A + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + ABC + \overline{A}\overline{B}$	4M

SUMMER-19 EXAMINATION 22320 Subject Name: Digital technique _Subject Code: Model Answer the gate. Speed of Operation: Speed of a logic circuit is determined by the time between the application of input and change in the output of the circuit. Draw logic diagram of half adder circuit d) Ans: в Sum Carry OR

4M

4M

		A B S Sum Sum Sum Note: logic diagram using NAND/NOR also can be considered.	
--	--	---	--

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
3		Attempt any THREE of the following :	12- Total Marks

SUMMER-19 EXAMINATION

Model Answer

Subject Name: Digital technique

_Subject Code:

SUMMER-19 EXAMINATION
Subject Name: Digital technique <u>Model Answer</u>

_Subject Code:

SUMMER-19 EXAMINATION Model Answer

_Subject Code:

	CLK		INPUTS	OU	TPUTS	REMARK	
		S	R	Qn+1	$\overline{Qn+1}$		
	0	x	X	Qn	Qn	No change	
	1	0	0	Qn	Qn	No change	
	1	0	1	0	1	Reset	
	1	1	0	1	0	Set	
	1	1	1	?	?	Forbidden	
c)	Give classi	fication of me	mory and compa	re RAM and ROM	/I (any four poin	its)	4M
	MEMORY MEMORY PRIMARY SECONDARY -HDD -FDD -FDD -FDD -FDD -DVD -DVD -Pendrive SRAM DRAM						
	PRIMA ROM PPH -EH -EH	RY ROM PROM EPROM	R/ SRAM	AM DRAN	SECON —HI —FD —DV —Pe	DARY DD DD 7D ndrive	Consid even if Second ry memo is not writter
	PRIMA ROM -PH -EH -EH	RY ROM PROM EPROM	RA SRAM AM and ROM	AM DRAM	SECON HI FD DV Pe	DARY DD DD 7D ndrive	Consid even if Second ry memo is not writter
	PRIMA ROM PH EH EH	RY ROM PROM EPROM on between R R/ emporary Stora	SRAM SRAM AM and ROM	AM DRAM 1.Permanet	SECON HI FD DV Pe M RAM nt Storage.	DARY DD DD 7D ndrive	Consid even if Second ry memo is not written
	PRIMA ROM PPH -EH -EH Compariso	RY ROM PROM EPROM on between R R/ emporary Stora	RAM SRAM AM and ROM AM age. 35.	DRAM DRAM 1.Permaner 2.Store data	SECON HI FD DV Pe M M RAM nt Storage. a in GBs.	DARY DD DD 7D ndrive	Consid even if Second ry memo is not writter

SUMMER-19 EXAMINATION

Model Answer

Subject Name: Digital technique

_Subject Code:

		4. Writing data is Faster.	4.Writing data is Slower.	
				Compari
	-1)	Ctata the explications of shift vestator		
	a)	State the applications of shift register.		4171
	Ans:	1] Shift register is used as Parallel to se serial data. It is utilized at the transmitt block.	erial converter, which converts the parallel data into er section after Analog to Digital Converter (ADC)	Each Applicati on 1M
		2] Shift register is used as Serial to para parallel data. It is utilized at the receive block.	Illel converter, which converts the serial data into r section before Digital to Analog Converter (DAC)	Any other relevant applicati
		3] Shift register along with some addition ones. Hence, it is used as sequence gen	onal gate(s) generate the sequence of zeros and erator.	on must b e consider
		4] Shift registers are also used as count type of output from right most D flip-flo counter and Johnson Ring counter.	ers . There are two types of counters based on the op is connected to the serial input. Those are Ring	ed
Q. No.	Sub Q. N.		Answers	Marking Scheme
4		Attempt any THREE of the following :		12- Total Marks
	(a)	Subtract the given number using 2's co	mpliment method:	4M
		(i) $(11011)_2 - (11100)_2$ (ii) $(1010)_2 - (101)_2$		
	Ans:	i) Subtract (11011) ₂ – (11100) ₂	using 2's complement binary arithmetic.	
		Solution:		
		$(11011)_2 - (11100)_2$		
		Now,		
		2's complement of (11100) ₂ = 1's comple	ement of (11100) 2+1	2's
		1's complement of $(11100)_2 = (00011)_2$		comple

ubject	Name: Digital technique		SUN <u>N</u>	/ME lode	R-19 el An) EX <u>swe</u>	AMINATI <u>r</u>	ION _Subject Code:	22320	
	2's complement = 00011+:	1 = (0010	0						1M
	Therefore,		1	1	0	1	1			
	+		0	0	1	0	0			
			1	1	1	1	1			
	There is no carry it indicate	es tł	nat r	esult	s is i	nega	tive and	in 2's complement for	m i.e.(11111) ₂ .	
	Therefore, for getting true	val	ue i.e	e.(+1	.) ta	ke 2	's comple	ement of (11111) is	- (72	
	1's complement + 1			•			·			Fina
	= 00000 + 1									Ans
	Ans= (00001) ₂									1M
	Ans: (11011) ₂ – (11100) ₂ =	2's	com	plen	nent	of (2	11111) ₂ =	· (-1) ₁₀		
	ii) Subtract (1010))2 -	(101	L)₂us	sing	2's c	ompleme	ent binary arithmetic.		
	2's complement of (0101) ₂	2 = 1	's co	mpl	eme	nt o	f (0101) 2	+1		
	1's complement of (0101) ₂	2 = (101)) ₂						
	2's complement = 1010+1	= 10)11							2's
	Therefore,	1	0	1	0					com
	+	1	0	1	1					mer 1M
		т	0	T	Т					
	1									
	1	0	1	0	1					
	There is carry ignore it, wh	nich	indic	ates	s tha	t res	ults is po	sitive i.e.(+5)		
	= (0101) ₂									
	Ans: (1010) ₂ - (101) ₂ = (01	101)	₂ = (+	·5) ₁₀						Fina Ansv 1M
(b)	Stare De-Morgan's theore	em a	and	prov	e an	y on	е			4M

SUMMER-19 EXAMINATION _Subject Code: 22320 Subject Name: Digital technique Model Answer De Morgan's 1st Theorem: Ans: Stateme It states that the compliment of sum is equal to the product of the compliment of nts-1M individual variables. each $(\overline{A+B}) = \overline{A} \ \overline{B}$ Anyone Proof: proof -2M \overline{B} $(\overline{A+B})$ $\overline{A} \ \overline{B}$ Ā В A+B Α 0 1 1 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 1 0 De Morgan's 2nd Theorem: It states that the compliment of product is equal to the sum of the compliments of individual variables. $(\overline{AB}) = \overline{A} + \overline{B}$ Proof: $\overline{A} + \overline{B}$ \overline{B} A.B (\overline{AB}) \overline{A} В Α 0 1 1 0 0 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 0 (c) 4M Compare between PLA and PAL.

SUMMER-19 EXAMINATION

Subject Name: Digital technique

Model Answer

_Subject Code: 22320

Ans:	PLA	PAL	Any four	
	 Both AND and OR arrays are programmable 	 OR array is fixed and AND array is programmable. 	1M each	
	2) Costliest and complex than PAL	2) Cheaper and simpler		
	 AND array can be programmed to get desired minterms. 	 AND array can be programmed to get desired minterm. 		
	 Large number of functions can be implemented. 	 Provides the limited number of functions. 		
	5) Provides more programming flexibility.	5) Offers less flexibility, but more likely used.		
(d)	Reduce the following expression using K-map $F(A \cap C \cap C) = \pi M (1 - 3 - 5 - 7 - 8 - 10 - 14)$	and implement it	4M	
Ans:			Kman-	
71101	AB 00 01	11 10	1M	
		0 (A+D)	Pairs- 1.5M	
	0 0 0 1	3 2	Final Ans-	
	01 4 5	0 7 6	1.5M	
	1 1 12 13	$15 \qquad 0 \qquad (\overline{A} + \overline{C} + D)$		
	10 8 9	11 0 10		
		(A+B+D)		
	$F(A,B,C,D)=(A+\overline{D})(\overline{A}+\overline{C}+D)(\overline{A}+\overline{D})$	3+D)		

SUMMER-19 EXAMINATION

Model Answer

Subject Code:

Q. No.	Sub Q. N.	Answers	Marking Scheme
5.		Attempt any TWO of the following:	12- Total Marks
	a)	Design BCD to seven segment decoder using IC 7447 with its truth table.	6M

BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 2700 ·tified)

MAHARASHT (Autonomous)

SUMMER-19 EXAMINATION

SUMMER-19 EXAMINATION

Model Answer

_Subject Code:

	Commo	n Cat	hod	e Dis	play:								
				r+	sv		D						
	ć	nse 1	-	VEE	_	NAL		rcimal	output				
	BOD	c_	1			AN	6	<u> </u>					
	inputsy	0 -	3	14744	a -	ww	e f	51	6	Com	mon		
		a-	-			m	e .	-		7 (othod	e	
	I april	F	RITE	ĩ	-	w	f e		C				
		4	167	GNO	_	w	9	d				1.2	
				-1-					-				
	Trut	h Tabl	le										
		BCI	8 in	pub	7	Segp	rent c	odeel	output	I		Display	
		D	CI	BA	a	b	3	d	c	t	3	outputy	
	-	0	0 .	00	1	1	1	1	1	1	0	13	
		0	0 0	1	0	1	1	0	0	0	0	1	
		0	0 1	0	1	1	0	1	1	0	1	5	
		0	0	1	1	1	1	1	0	0	1	E	
		0	10	0	0	1	1	0	0	1	1	1-1	
		0	1 0	0 1	1	0	1	1	0	1	1	5	
		0	1 1	0	0	0	1.	1	1	1	1	5	
		0	11	1	-1	1	1	0	0	0	0	3	
		1	0 1	00	1	1	1	1	t	1	1	(3)	
		1	00	1 1	1	1	1	0	0	1	1	1=1	
b)	Describ	o tho	wo	rkina	of 4 h	it univ	vorsal	chift r	ogista	r			6M
5,	Describ	e the	WU	11116			versar	5111111	egiste				
Δns·													
	Î.												

SUMMER-19 EXAMINATION Model Answer

Subject Code:

SUMMER-19 EXAMINATION

Model Answer

_Subject Code:

SUMMER-19 EXAMINATION Model Answer

_Subject Code:

Q. No.	Sub Q. N.	Answers	Marking Scheme
6.		Attempt any TWO of the following :	12- Total Marks
	a)	Design a mod-6 Asynchronous counter with truth-table and logic.	6M
	Ans:	MOD 6 asynchronous counter will require 3 flip flops and will count from 000 to 101. Rest of the states are invalid. To design the combinational circuit of valid states, following truth table and K-map is drawn:	
			Truth Table 2M

SUMMER-19 EXAMINATION

Model Answer

Subject Code:

SUMMER-19 EXAMINATION Model Answer

_Subject Code:

	1 TA OR TB OB TC OC	
	Fire Circuit diagram of MOD 6 acurator sources	
b)	Design 1:8 de multiplexer using 1:4 de multiplexer	6M
Ans:		Desig 3M

SUMMER-19 EXAMINATION 22320 Subject Name: Digital technique Model Answer Subject Code: Yo. Din Din · Y1 1:4 DEMUX - Y2 Truth **S2** ¥3 Table SI S₀ 3M B C. Sı So. _ Y4 Din - Y5 1:4 DEMUX • Y6 **S2** · Y7 Fig:1:8 Demultiplexer using 1:4 demultiplexer Data Input Select Inputs Outputs D **S**₂ Y7 Y4 Y₁ **S**₁ S₀ Y₆ Y₅ Y₃ Y₂ Yo D 0 0 0 0 0 0 0 0 0 0 D 1 0 D 0 0 0 0 0 0 0 D 0 0 0 0 0 0 D 0 1 0 0 0 D D 0 1 1 0 0 0 0 D 0 0 0 D 1 0 0 0 0 0 D 0 0 0 0 D 1 0 1 0 0 D 0 0 0 0 0 D 1 1 0 0 D 0 0 0 0 0 0 D 1 1 1 D 0 0 0 0 0 0 0 Fig: Truth Table of 1:8 Demultiplexer . c) Draw the circuit diagram of 4 bit R-2R ladder DAC and obtain its output voltage expression 6M Ans:

Subject Name	e: Digital technique	Model Answer	_Subject Code:	22320	
	$V_0 = -\left(\frac{RP}{3R} \cdot \frac{VR}{2^4}\right)$	$b_0 + \frac{Rf}{3R} \cdot \frac{VR}{2^3} b_1 + \frac{Rf}{3R}$	$\frac{\sqrt{R}}{2} \cdot \frac{\sqrt{R}}{2} \cdot \frac{b^2}{2} + \frac{Rf}{3R} \cdot \frac{1}{3R}$	$\frac{\sqrt{R}}{2'}$ b3)	2M
	$V_{o} = -\left(\frac{Rf}{3R}\right) \left(\frac{Vf}{2}\right)$	(R) [8b3+4b2+2	b1+b0		