

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

<u>MODEL ANSWER</u> WINTER– 18 EXAMINATION

Subject Code:

22320

Subject Title: Digital Techniques

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q.N.		Scheme
Q.1		Attempt any FIVE of the following :	Total Marks
			10
	a)	Write the radix of binary, octal, decimal and hexadecimal number system.	2M
	Ans:	Radix of: Binary – 2	¹ / ₂ M each
		Octal - 8	
		Decimal - 10	
		Hexadecimal -16	
	b)	Draw the circuit diagram for AND and OR gates using diodes.	2M
	Ans:		1 M each
		Diode AND gate :Diode OR gate :	
		$ \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	

SOP form: Y = AB + BC + AC POS form: Y = (A + B) (B + C) (A + C) State the necessity of multiplexer. Necessity of Multiplexer: • It reduces the number of wires required to pass data from source to destination. • For minimizing the hardware circuit. • For simplifying logic design. • In most digital circuits, many signals or channels are to be transmitted.	1 M each (any proper example can be considered)2M2M2 M(any two proper points)
 Y = (A + B) (B + C) (A + C) State the necessity of multiplexer. Necessity of Multiplexer: It reduces the number of wires required to pass data from source to destination. For minimizing the hardware circuit. For simplifying logic design. In most digital circuits, many signals or channels are to be transmitted. 	2M 2 M(any two proper points)
State the necessity of multiplexer. Necessity of Multiplexer: • It reduces the number of wires required to pass data from source to destination. • For minimizing the hardware circuit. • For simplifying logic design. • In most digital circuits, many signals or channels are to be transmitted.	2M 2 M(any two proper points)
 Necessity of Multiplexer: It reduces the number of wires required to pass data from source to destination. For minimizing the hardware circuit. For simplifying logic design. In most digital circuits, many signals or channels are to be transmitted, 	2 M(any two proper points)
 and then it becomes necessary to send the data on a single line simultaneously. Reduces the cost as sending many signals separately is expensive and requires more wires to send. 	
Draw logic diagram of T flip-flop and give its truth table.	2M
Note: Diagram Using logic gates with proper connection also can be consider. Logic Diagram: $T \circ \downarrow^{J}$ $CK \circ \downarrow^{J-K}$ FF	1M (any one diagram) 1 M
	Draw logic diagram of T flip-flop and give its truth table. Note: Diagram Using logic gates with proper connection also can be consider. Logic Diagram: $T \circ - Pr$ Pr $T \circ - Pr$ $T \circ - Pr$ $CK \circ - FF$ Q K FF Q $T \circ - Pr$ $CK \circ - FF$ Q K PF Q $T \circ - Pr$ $T \circ - Pr$ Pr Q $T \circ - Pr$ $V \circ Pr$

1	<u>1 rum 1</u>	able:				
		Inj T	out ^{'n}	Output Q _{n+1}	Operation Performed	
		()	Qn	No change	
		1	[\overline{Q}_n	Toggle	
f)	Define 1 Mod-6 (nodulus counter.	of a co	unter. Write the nur	nbers of flip flops required for	· 2M
Ans:	• N c • 7	Modulus countes. The num	of coun bers of f	ter is defined as num	ber of states/clock the counter Mod-6 counter is 3.	Definition: 1 M No. of FF- 1M
g)	State fu	nction o	of preset	and clear in flip flo	р.	2M
	i • I f	s uncerta Hence, th function	ain i.e. m ne functi of clear	hay be $Q = 1$ or $Q = 0$ on of preset is to set a is to clear a flip flop). a flip flop i.e. $Q = 1$ and the i.e. $Q = 0$.	function (table is optional)
		Inputs		Output	Operation performed	
	СК	Cr	Pr	Q	New Jay an aven	
		1	1	Q_{n+1} (Table 7.1)	Normal FLIP-FLOP	
	0	0	1	0	Clear	
	0	0	1 0	0 1	Clear Preset	

h)	Convert –	4M
0)	$(255)_{10} = (?)_{16} = (?)_8$	
	$(157)_{10} = (?)_{BCD} = (?)_{Excess3}$	
Ans:	(i) $(255)_{10} = (FF)_{16} = (377)_8$	
	$(255)_{10} = (FF)_{16}$	1 M
	16 255 F (15)	
	15 F	
	$(255)_{10} = (377)_8$	
	$\frac{8}{255}$ 7 1	1 M
	$\frac{8 31}{3 3}$	
	(1) $(157)_{10} = (0001010101111)_{BCD} = (010010001010)_{Excess3}$	
	$(157)_{10} = (000101010111)_{BCD}$	
	<u>1</u> <u>5</u> <u>7</u> 0001 0101 0111	1 M
	$(000101010111)_{BCD} = (010010001010)_{Excess3}$	
	11 111 111 0001 0101 0111	1 M
	+ 0011 0011 0011 0100 1000 1010	
c)	Draw the symbol, truth table and logic expression of any one universal logic gate. Write reason why it is called universal gate.	4 M
Ans:	(Note: Any one universal gate has to be considered.)	
	Universal Gates: NAND or NORSymbol:	1 M
	Truth table:	
	A B Y A B Y	1 M
	Logic expression:	
	$Y = \overline{A \cdot B}$ $Y = \overline{(A + B)}$	1 M
	$\mathbf{Y} = (\mathbf{A} + \mathbf{B})$ NAND and NOP gates are called as "Universal Cate" as it is possible to	
	implement any Boolean expression using these gates.	1 M

Q. 3		Attempt any THREE:			12-Total
	a)	Compare TTL and CMG(i)Propagation of(ii)Power Dissipa(iii)Fan-out(iv)Basic gate	Marks 4M		
	Ans:	<u>NOTE :- (Relev</u>	1 Marks		
		Parameter	each point		
		Propagation delay			
		Power Dissipation			
		Fan-out			
		Basic gate			
	b)	Describe the function of simplification and logic	4M		
		A full adder is a combinat three bits, the two input bits Block diagram :	tional logic circuit that per its A and B, and carry C fr	forms addition between rom the previous bit.	1M
					1M

c)	Realize the basic logic gates, NOT, OR and AND gates using NOR gates only.	4M						
Ans:	(NOT GATE USING NOR GATE:1 M)	1M						
	where, $X = A$ NOR A $x = \overline{A}$							
	(AND GATE USING NOR GATE:1.5 MARKS)							
		1.5M						
	$\overline{\mathbf{Q}}=\bar{\mathbf{A}}+\bar{\mathbf{B}}=\bar{\mathbf{A}}+\bar{\mathbf{B}}$							
	$=\overline{\mathbf{A}.\mathbf{B}}$ $= \mathbf{A}.\mathbf{B}$							
	(OR GATE USING NOR GATE:1.5 MARKS)							
		1.5 M						
	$\mathbf{Q} = \overline{\mathbf{A} + \mathbf{B}}$ $= \mathbf{A} + \mathbf{B}$							
d)	Describe the working of JK flip-flop with its truth table and logic diagram.	4M						
Ans:	(Diagram-2 M, Working-1M, Truth table-1M)							
	<u>Truth Table :-</u>	1M						
	Truth Table							
	1 1 † Q ₀ (toggles)							

			Clock Pulse No	QA	QB	QC	QD		
			0	0	0	0	0		
			1	1	0	0	0		
			2	0	1	0	0		
			3	0	0	1	0		
			4	0	0	0	1		
			5	0	0	0	0		
_									
-	b)	Draw 16:1 M	UX tree using 4:1	MUX.					4M
	Ans:	Diagram :-							
		10 11 12 13 14 15 16 17 18 19 110 111 111 111 111 112 113 114 115	4X1 MUX ↑ ↑ S1 S0 4X1 MUX ↑ ↑ S1 S0 4X1 MUX ↑ ↑ S1 S0 4X1 MUX ↑ ↑ S1 S0 4X1 MUX ↑ ↑ S1 S0			4X1 MUX 53 52	2	Output (f)	4M

c)	Calculate analog output of 4 bit DAC for digital input 1101. Assume VFS = 5V.	4M						
Ans:	(Formula- 1M, Correct problem solving- 3M)							
	<u>Formula :-</u>							
	$V_{R} = V_{FS}$ $V_{o} = V_{R} [d_{1} 2^{-1} + d_{2} 2^{-2} + + d_{n} 2^{-n}]$							
	$= 5(1x2^{-1} + 1x2^{-2} + 0x2^{-3} + 1x2^{-4})$ = 5(0.5+O.25+0+0.0625) = 4.0625 Volts							
	OR							
	$V_{FS} = V_R \cdot \left(\frac{b3}{2} + \frac{b2}{4} + \frac{b1}{8} + \frac{b0}{16}\right)$							
	Note – (Since V_R is not given find V_R)							
	Full Scale o/p mean	marks for Vo						
	b3 b2 b1 b0 = 1111							
	$V_{FS} = 5V$							
	$5 = V_R \cdot \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}\right)$							
	$\mathbf{V}_{\mathbf{R}}=5.33$							
	For digital i/p b3 b2 b1 b0 = 1101							
	$V_0 = 5.33 \left(\frac{1}{2} + \frac{1}{4} + \frac{0}{8} + \frac{1}{16}\right)$							
	$\mathbf{V}_0 = \mathbf{4.33V}$							
d)	State De Morgan's theorem and prove any one.	4M						
Ans:	(Each State and proof using table- 2M each)							
		2M						

		i) $\overline{AB} = \overline{A}$	$\overline{A} + \overline{B}$									
		It states t	hat complin	nent of prod	uct is equal	to sum of t	heir complimen	ts.				
		1	2	3	4	5	6					
		А	В	AB	Ā	\overline{B}	$\overline{A} + \overline{B}$					
		0	0	1	1	1	1					
		0	1	1	1	0	1					
		1	0	1	0	1	1					
		1	1	0	0	0	0					
		Column 03	= column ()6				2M				
		i.e. $\overline{AB} = \overline{AB}$	$\overline{4} + \overline{B}$					2111				
		Hence proved										
		OP										
		UK										
		ii) $\overline{A+B} =$	$\overline{A} \cdot \overline{B}$					I				
		It states th	at complem	ent of sum i	is equal to p	roduct of th	neir complement	s.				
		1	2	3	4	5	6					
		A	B	A+B	<u>A</u>	<u>B</u>	$A \cdot B$					
		0	1	0	1	0	0					
		1	0	0	0	1	0					
		1	1	0	0	0	0					
		Column 03	3 = column	06								
		$\therefore A + B =$ Hence pro	= A·B ved									
		fience pro	· cu.					1				
	e)	Design one d	ligit BCD A	dder using	IC 7483							
	- /	8	8	8								
	Ans:	(Diagram:4)	M)									
		(Note: Labe	led combina	tional circu	it can he dro	ıwn usino u	niversal gate	4M				
		also)					and guild					

	NOW at	uu (1	1 + 1	11) ₂ 0001 11101	and (11 11		1)2							
	discard Therefo	1 I the ore fi	0 carry inal	1111 → (y gen answ	0 Carry erate ver w	y is gen ed vill be	nerate (0111	d so ar 10)2 =	15wer (30)2	is in p	ositive	e form	, so will	
b)	Design	a 4	bit s	synch	iron	ous co	unter	and d	lraw i	ts logi	c diag	ram.		6M
Ans:	State 7	Fable	e:											
		Pr	resen	t stat	e	D÷	Next	state	A ±	F	lip flo	p inpu	ts	
		D	C	в	A	D+	C+	B+	A+ 1	I _D	1 _C	1 _B	1 _A	
		0	0	0	1	0	0	1	1	0	0	1	1	
		0	0	1	0	0	0	1	1	0	0	0	1	2M-Stat
		0	0	1	1	0	1	0	0	0	1	1	1	table
		0	1	0	0	0	1	0	1	0	0	0	1	
		0	1	0	1	0	1	1	0	0	0	1	1	
		0	1	1	0	0	1	1	1	0	0	0	1	
		0	1	1	1	1	0	0	0	1	1	1	1	
		1	0	0	0	1	0	0	1	0	0	0	1	
		1	0	0	1	1	0	1	0	0	0	1	1	
		1	0	1	0	1	0	1	1	0	0	0	1	
		1	0	1	1	1	1	0	0	0	1	1	1	
		1	1	0	0	1	1	0	1	0	0	0	1	
		1	1	0	1	1	1	1	0	0	0	1	1	
		1	1	1	0	1		1	1	0	0	0	1	
	L	1	1	1	1	0	0	0	0	1	1	1	1	

	-
next bit is set to 1 and the same test is done continuing this binary search until every bit in the SAR has been tested. The resulting code is the digital approximation of the sampled input voltage and is finally output by DAC at end of the conversion (EOC).	
Resolution and conversion time associate with ADC-	
Resolution: It is the maximum number of digital output codes. Resolution= 2^n (OR) It is defined as the ratio of change in the value of input analog voltage required to change the digital output by 1 LSB. \therefore Resolution = $\frac{V_{FS}}{2^n - 1}$	1 Marks each
Conversion time: The time difference between two instants i.e. 'to' where SOC signal is given as input to the ADC and 't1' where EOC signal we get as output from ADC. it should be small as possible.	
<pre></pre>	

Q.6		Attempt an	Total Marks						
	a)	Design 4 bit	t Binary to G	Fray code c	onve	rter.			6M
	Ans:	Truth Table	2M for truth table						
			Sinary Input	D .	C.	Gray		C	1/2m for
		$\begin{array}{c c} \mathbf{D3} & \mathbf{D2} \\ 0 & 0 \end{array}$		D0 0	<u>G3</u>	G2			each output
				0 1	0			1	equation
			1	0	0	0	1	1	2M for
		0 0	1	1	0	0	1	0	realization
		$\begin{array}{c c} 0 & 0 \\ \hline 0 & 1 \end{array}$	0	0	0	1	1	0	using gates
		0 1	0	1	0	1	1	1	
		0 1	1	0	0	1	0	1	
		0 1	1	1	0	1	0	0	
		1 0	0	0	1	1	0	0	
		1 0	0	1	1	1	0	1	
		1 0	1	0	1	1	1	1	
		1 0	1	1	1	1	1	0	
		1 1	0	0	1	0	1	0	
			0	1	1	0			
		$\begin{array}{ c c c } 1 & 1 \\ \hline 1 & 1 \end{array}$	1	0 1	1 1		0	0	
		K-MAP FO	R G3·	•	<u> </u>	0	U	U	
			R 05.						
		B1B	0 00	01		"11	10		
		6382							
			n			•	0		
						U	U		
								_	
		01	0	O		0	O		
								_	
		11	1	1		1	1		
		10	1	1		1			
						•			
		G3=B3							

•		•		
Ans:	Daramatar	Volatila momory	Non Volatila momory	
	definition	Memory required electrical power to keep	Memory that will keep	Any 3poir (each 1
		information stored is	without the need of	mark)
		called volatile memory	called nonvolatile	
			memory.	
	classification	All RAMs	ROMs, EPROM, magnetic memories	
	Effect of power	Stored information	No effect of power	
		is retained only as	on stored	
		long as power is on.	information	4
	applications	For temporary	For permanent	
		storage	storage of	
			1ntormation	
	2 SRAM with DRAM m	nemory	mormation	
	2. SRAM with DRAM m Parameter	nemory SRAM	DRAM	
	2. SRAM with DRAM m Parameter Circuit configuration	nemory SRAM Each SRAM cell is	DRAM Each cell is one	
	2. SRAM with DRAM m Parameter Circuit configuration	emory SRAM Each SRAM cell is a flip flop	DRAM Each cell is one MOSFET & a capacitor	
	2. SRAM with DRAM m Parameter Circuit configuration Bits stored	SRAM Each SRAM cell is a flip flop In the form of	DRAM Each cell is one MOSFET & a capacitor In the form of charges	
	2. SRAM with DRAM m Parameter Circuit configuration Bits stored	SRAM Each SRAM cell is a flip flop In the form of voltage	DRAM Each cell is one MOSFET & a capacitor In the form of charges	
	2. SRAM with DRAM m Parameter Circuit configuration Bits stored No of components per cell	emory SRAM Each SRAM cell is a flip flop In the form of voltage More	DRAM Each cell is one MOSFET & a capacitor In the form of charges Less	
	2. SRAM with DRAM m Parameter Circuit configuration Bits stored No of components per cell Storage capacity	INTERIOR OF CONTRACT OF CONTRACT.	DRAM Each cell is one MOSFET & a capacitor In the form of charges Less More	
	2. SRAM with DRAM m Parameter Circuit configuration Bits stored No of components per cell Storage capacity Refreshing	nemory SRAM Each SRAM cell is a flip flop In the form of voltage More Less It does not require refreshing	DRAM Each cell is one MOSFET & a capacitor In the form of charges Less More It require refreshing.	
	2. SRAM with DRAM m Parameter Circuit configuration Bits stored No of components per cell Storage capacity Refreshing Cost	SRAM Each SRAM cell is a flip flop In the form of voltage More Less It does not require refreshing It is expensive	DRAMEach cell is oneMOSFET & a capacitorIn the form of chargesLessMoreIt require refreshing.It is cheaper	
	2. SRAM with DRAM m Parameter Circuit configuration Bits stored No of components per cell Storage capacity Refreshing Cost Speed	SRAM Each SRAM cell is a flip flop In the form of voltage More Less It does not require refreshing It is expensive It is faster	DRAM Each cell is one MOSFET & a capacitor In the form of charges Less More It require refreshing. It is cheaper It is slower	

