

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
- **► V2V EdTech LLP**
- w2vedtech.com
- o v2vedtech

WINTER - 19EXAMINATIONS

Subject Name: Digital Techniques Model Answer Subject Code: 22320

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

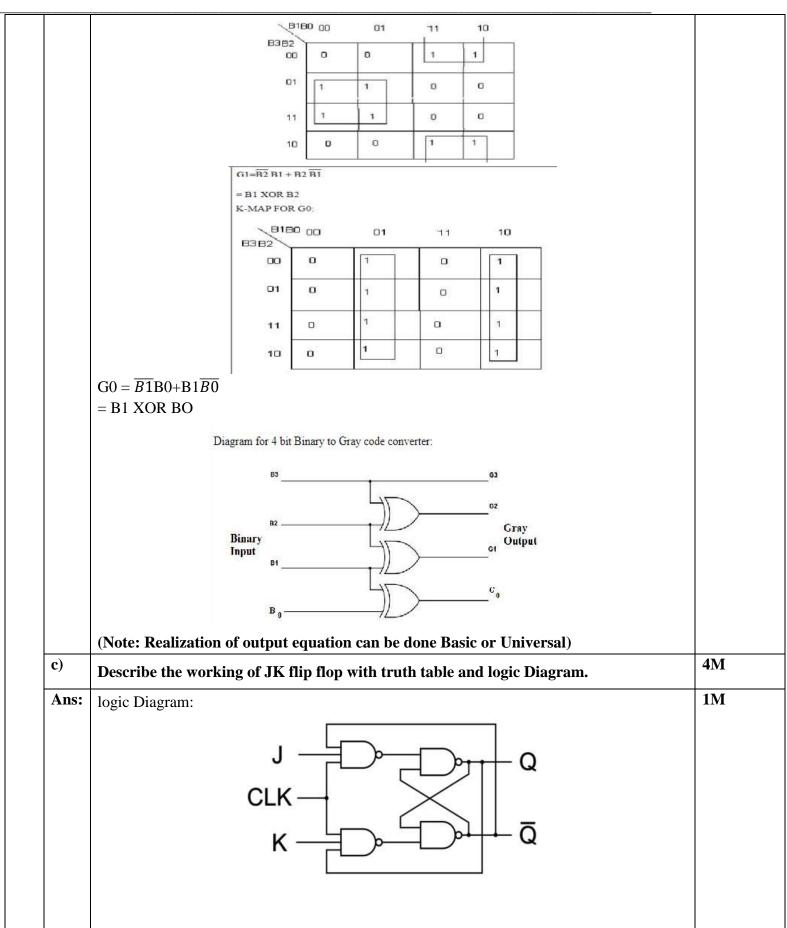
Q.	Sub	Answer	Marking
No.	Q. N.		Scheme
Q.1		Attempt any FIVE of the following:	10-Total
Q.1		Attempt any FIVE of the following.	Marks
	a)	Convert (D8F) 16 into binary and octal.	2M
	Ans:	(DSF) = (110110001111) 2 Sleep 2 1101 1000 1111)	1M
		Step 2 $\frac{110110001111}{66617}$ $\frac{1}{6}$ $\frac{1}{7}$ $\frac{1}{7}$ $\rightarrow octol$	1M
	b)	Draw symbol, Truth table and logic equation of Ex-OR gate.	2M
	Ans:	EX-OR gate Symbol A DD	½ M
		Logic Equation = $A\bar{B} + \bar{A}B OR^{\wedge}$ \bigcirc	/21/2
		Inputs Output A B Y O O O	1M

BOARD OF TECHNICAL EDUCATION

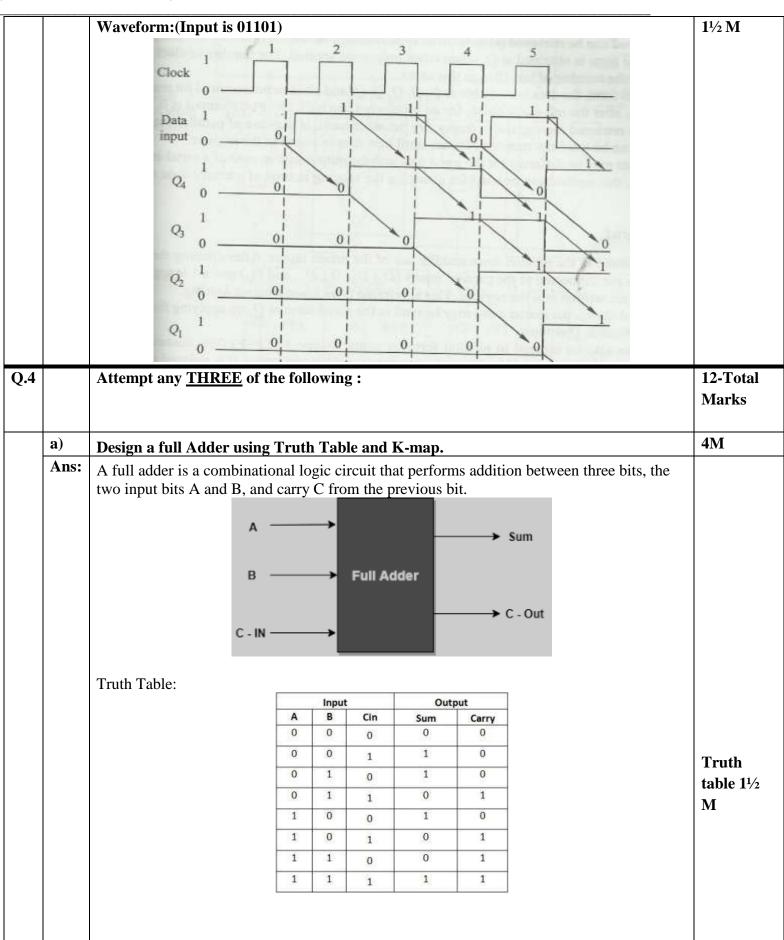
	0 1 1	
	1 0 1	
	1 1 0	
c)	State the DeMorgan's Theorems.	2M
Ans:	De Morgan's 1^{st} Theorem complement of sum is equal to product of their individual complements. OR $\overline{A+B} = \overline{A} \bullet \overline{B}$ De Morgan's 2^{nd} theorem Complement of product is equal to sum of their individual complements. OR $\overline{A \bullet B} = \overline{A} + \overline{B}$	1 st -1M 2 nd -1N
d)	Convert the following expression into standard SOP form. $Y = AB + A\overline{C} + BC$	2M
Ans:	Y = AB+ A \overline{C} + BC Total variable ABC 1 st Product term = AB (C is missing) 2 nd Product term = A \overline{C} (B is missing) 3 rd Product term = BC (A is missing) Y = AB•1 + A \overline{C} •1 + BC• 1 Y = AB(C+ \overline{C}) A \overline{C} (B+ \overline{B}) + BC(A+ \overline{A}) Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} Standard SOP Form	2M
e)	Draw symbol and write truth table of D and T Flip Flop.	2M
Ans:	(Note: Symbol with other triggering method also can be consider)	1M Symbo
	(1/2m) D Flip Flop T FF Symbol Symbol (1/2m) T T Qn+1 Clock OFF Qn+1 Clock OFF Qn+1	
	(Nambol D T T Rott) (Nambol D T T Rott)	1M Truth table
f)	Symbol D D Qnell (V2M) T TO THE Qnell (V2M) Touth table (V2 M) Truth table (V2 M) Truth table (V2 M) There output D Qnell (V2 M) There output D Qnell (V2 M)	1M Truth

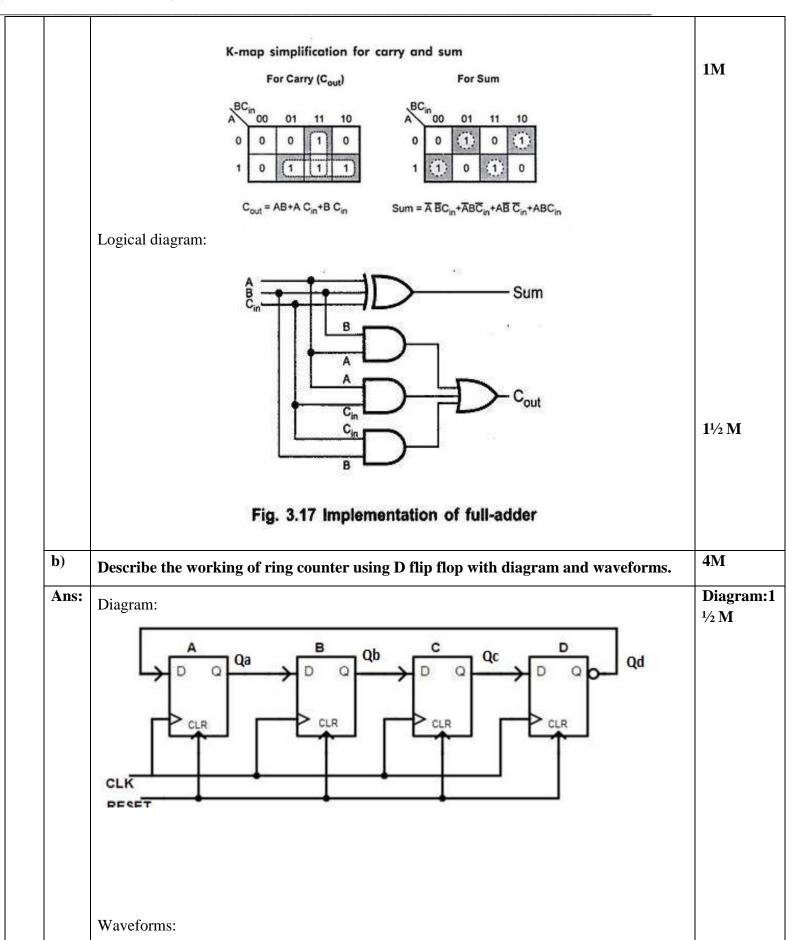
BOARD OF TECHNICAL EDUCATION

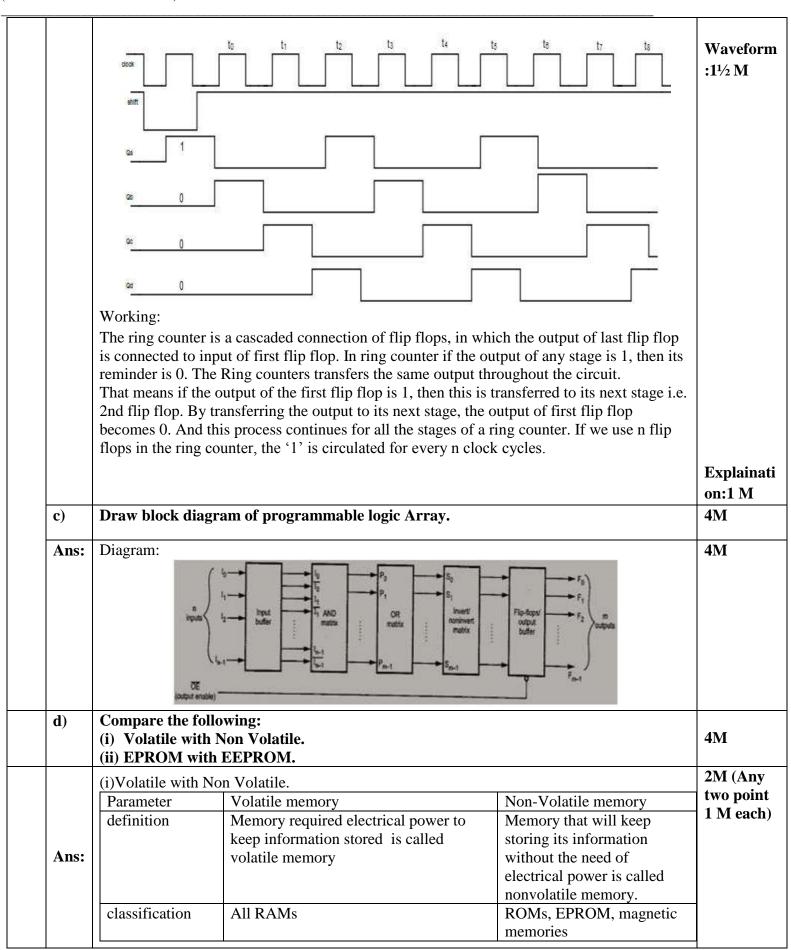
	$2^{n} = m$	
	n = no.of flip flops requried	
	m= no.of states	
	$2^{n} = 16$	
	n = 4	
	4 flip flops are required to count 16 clock pulse.	
g)	List the types of DAC	2M
A	1) Din ama wai ahta d DAC	
Ans:	1) Binary weighted DAC	1M each
	2) R −2R ladder network DAC	


	Attempt any THREE of the following:	12-Total Marks
a)	Perform the subtraction using 2'S Complement methods. $(52)_{10} - (65)_{10}$	4M
Ans:		Conversion-1M each
	1000001 C 0 1 1 0 1 1 0 1 1 1	Complim nt-1M
	Let To get final answer take 2c of Result 1110011 $\frac{1c}{+1}$ 0001100 = $\frac{1}{(1101)_2}$ (52) ₁₀ = (65) ₁₀ = -(1101) ₂	Final answer- 1M
b)	Simplify the following Boolean Expressionand Implement using logic gate. $AB\overline{C}\overline{D} + AB\overline{C}D + ABC\overline{D} + ABCD$	4M

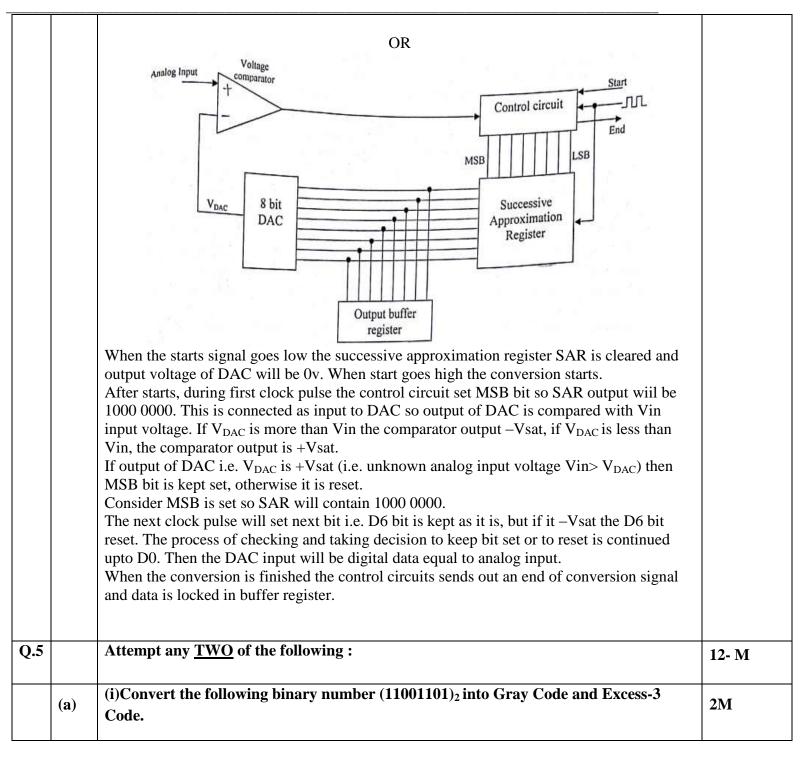
Ans:	ABED + ABED + ABED (2MW)	2M
	$= ABC(\overline{D}+D) + ABC(\overline{D}+D) \qquad (: A+\overline{A}=L)$	
	$= ABC \cdot 1 + ABC \cdot 1$	
	17923 1 /11012	
	$= AB (\bar{c}+c)$ $= AB \cdot 1$ $= AB$ $(A \cdot 1 = A)$	
	= AB (A-1 = A)	
	Implementatation (2 mks)	2M
	A — Y = AB	
	8—0	
-)	Finimize the four variable logic function using K map. $ (A,B,C,D) = \sum_{i=0}^{\infty} m(0,1,2,3,5,7,8,9,11,14) $	4M
Ans:		Kmap
	f(A,8,C,D) = Zm(0,1,2,3,5,7,8,9,11,14)	with p
	AD 200 01 11 10 2	Pair-1
	LSB (1) => AB	Answe
	$00 \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1}$	2M
	AB KEEL BD	
	11 11/11 11 11 12 14	
	(3) (3) A D	
	10 LA GENABCO	
	10 1 (I) A B C D	
	D & D	
	$ \widehat{A} \widehat{A} $	
	D & D	
	D & D	4M


ISO/IEC	- 2700	rtified)	
	Ans:	Find $(0, 2, 4, 6)$ $f_2 = \sum_{i=1}^{n} (1, 3, 5)$ $1 = \sum_{i=1}^{n} (1, $	4M
Q.3		Attempt any <u>THREE</u> of the following:	12-Total Marks
	a)	Realize the following logic expression using only NAND gates. (i) OR (ii) AND (iii) NOT	4M
_	Ans:	(i)OR OR gate from NAND gates INPUT A OUTPUT INPUT B	1½ M
		AND gate NAND gate NAND gate NOT gate Input A Input B Output A A	1½ M 1M
		(out put A bar)	


AHARASHTI utonomous)	Teen, in	BOARD OF TECHNICAL EDUCATION
SO/IEC - 2700	The Water Water Indian	rtified)


Ans:	Truth Table	for 4 bit Bi	nary to G	ray co	de conve	erter					2M Trut
1115			y Input	Tay Co	-40 001110			Gray (Output		table
	B3	B2	B1		В0	G3		G2	G1	G0	
	0	0	0		0	0		0	0	0	_
	0	0	0		1	0		0	0	1	
	0	0	1		0	0		0	1	1	
	0	0	1		1	0		0	1	0	
	0	1	0		0	0		1	1	0	
	0	1	0		1	0		1	1	1	Note:
	0	1	1		0	0		1	0	1	Vmon is
	0	1	1		1	0		1	0	0	Kmap is
	1 1	0	0		0	1		1	0	0	optional
	1	0	1		0	1		1	1	1	
	1	0	1		1	1		1	1	0	
	1	1	0		0	1		0	1	0	
	1	1	0		1	1		0	1	1	
	1	1	1		0	1		0	0	1	
	1	1	1		1	1		0	0	0	
			11	1	1 1	1 1	1 1				Logical diagram
	G3=B3 K-MAP FO	R G2	B1B	0 00	01	11	10				
			63 B2	0	0	0	0				
			D 1	1	1	1	1				
			11	0	0	0	0				
			10	1	1	1	11				
	$G2 = \overline{B3}B2$	$+ \overline{B2}B3$.,		•	•	-11	-,			

	Truth Table	
	J K CLK Q	1M
	0 0 † Q ₀ (no change)	
	0 1 † 0	
	1 1 \uparrow $\overline{\mathbb{Q}}_0$ (toggles)	
	Working:	
	The JK flip flop is basically a gated SR flip-flop with the addition of a clock input circuitry	2M
	that prevents the illegal or invalid output condition that can occur when both inputs S and R	
	are equal to logic level "1". Due to this additional clocked input, a JK flip-flop has four	
	possible input combinations, "logic 1", "logic 0", "no change" and "toggle".	
	Both the S and the R inputs of the previous SR bistable have now been replaced by two	
	inputs called the J and K inputs, respectively after its inventor Jack Kilby. Then this equates to: $J = S$ and $K = R$.	
	The two 2-input AND gates of the gated SR bistable have now been replaced by two 3-	
	input NAND gates with the third input of each gate connected to the outputs at Q and Q.	
	This cross coupling of the SR flip-flop allows the previously invalid condition of $S = "1"$	
	and $R = "1"$ state to be used to produce a "toggle action" as the two inputs are now	
	interlocked.	
	If the circuit is now "SET" the J input is inhibited by the "0" status	
	Of Q through the lower NAND gate. If the circuit is "RESET" the K input is inhibited by	
	the "0" status of Q through the upper NAND gate. As Q and Q are always different we can use them to control the input. When both	
	inputs J and K are equal to logic "1", the JK flip flop toggles	
d)	Describe the working of 4 bit SISO (serial in serial out) shift register with diagram	4M
(L)	and waveform if input is 01101.	*174
Ans:	Diagram:(use SR or JK or D type flip flop)	1M
	1 1	
	0 0 0 Serial 0 0 0 0 1 0 0 1 0	
	Data in D Q D Q D Q Q Q	
	FFA FFB FFC FFD Serial	
	CLK CLK CLK	
	Clock	
	Working:	
	The DATA leaves the shift register one bit at a time in a serial pattern, hence the	1½ M
	The Billiance the shift register one of at a time in a serial pattern, hence the	
	name Serial-in to Serial-Out Shift Register or SISO.	
	name Serial-in to Serial-Out Shift Register or SISO . The SISO shift register is one of the simplest of the four configurations as it has only three	
	name Serial-in to Serial-Out Shift Register or SISO.	
	name Serial-in to Serial-Out Shift Register or SISO . The SISO shift register is one of the simplest of the four configurations as it has only three connections, the serial input (SI) which determines what enters the left hand flip-flop, the	



BOARD OF TECHNICAL EDUCATION

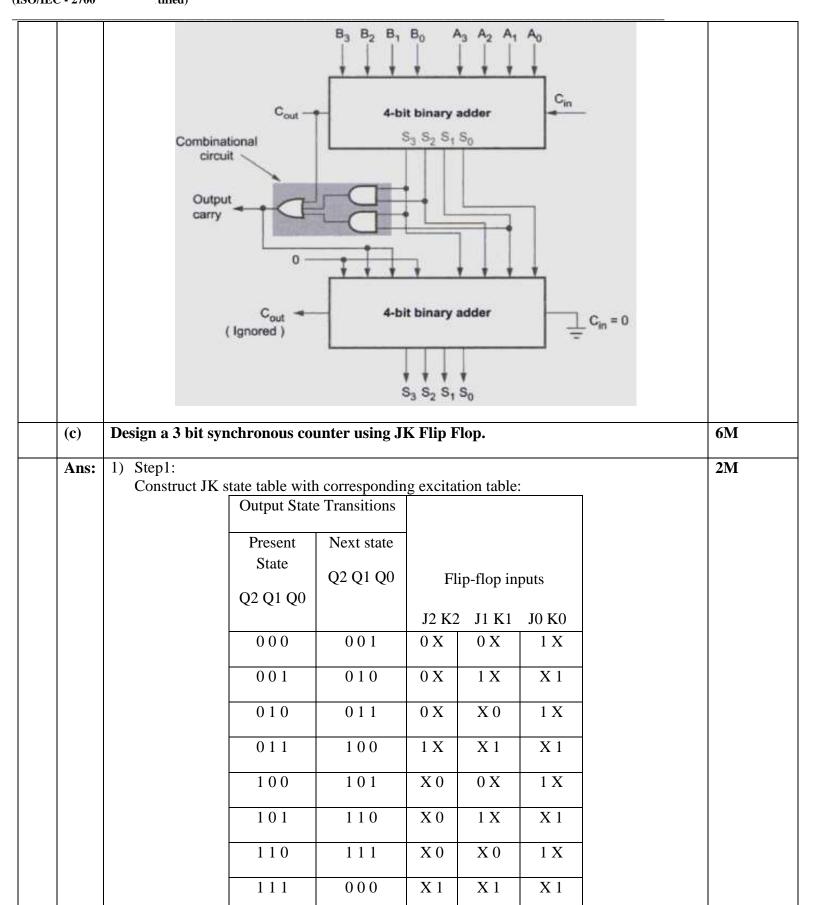
	Effect of power	Stored information long as power	mation is retained only as er is on.	No effect of power on stored information	
	applications	For tempora		For permanent storage of information	
	ii)EPROM with El	EPROM.			1M(Any
	Parameter		EPROM	EEPROM.	two point
	Stands for		Erasable Programable Read- Only Memory.	Electrically Erasable Programmable Read-Only Memory.	each)
	Basic	6	Ultraviolet Light is used to erase the content of EPROM.	EEPROM contents are erased using electrical signal.	
	Appearance		EPROM has a transparent quartz crystal window at the top.	EEPROM are totally encased in an opaque plastic case.	
	Technology]	EPROM is modern version of PROM.	EEPROM is the modern version of EPROM.	
e)	Describe the worl	king principal	l of successive approximation	on ADC.	4M
		aleals in less 9			
		alog age V_a	Comparator Programmer	MSB military market in the second sec	2M

Ans:	Binasy to Gray Code	1M each
	(11001101)2 = (10101011) Gray code	conversion
	10101011	
	Binary to Excess-3 Code	
	Step 1: Binasy to Decimal	
	(11001101)2 to Decimal	
	$(11001101)_{2} = 1 \times 2^{7} + 1 \times 2^{6} + 0 + 0 + 1 \times 2^{3} + 1 \times 2^{9} + 0 + 1 \times 2^{9}$	
	= 128 + 64 + 8 + 4 + 1 = (205)10	
	Step 2 : Decimal to BCD	
	\$ ° 5	
	0010 0000 0101	
	Add 3 + 0011 0011 0011 0101 0011 1000 -> Excess 3	
	code	23.7
	(ii)Perform the BCD Addition. $(17)_{10} + (57)_{10}$	2M
Ans:	$(17)_{10}$ 0001 0111	
	$(57)_{10} + 0101 0111 (1/2 \text{ M})$ $0110 1110$	
	Valid Invalid	
	BCD BCD(1/2 M)	
	ADD 0110 TO Invalid BCD	½ Each
	1 11	step
	$0110 1110 \\ + 0000 0110$	
	<u>01110100</u> (1/2 M)	
	$7 4 = (74)_{10} (1/2 M)$	
	(iii)Perform the binary addition. $(10110 \bullet 110)_2 + (1001 \bullet 10)_2$	2M
Ans:	$10110.110)_2 - (1001.10)_2 = (100000.010)_2$	2M
	11111	
	10110.110	
	$^{1} \pm 1001.10$	
	$\frac{+ 1001.10}{100000.010}$	
(b)		6M
(b) Ans:	100000.010	6M 2M

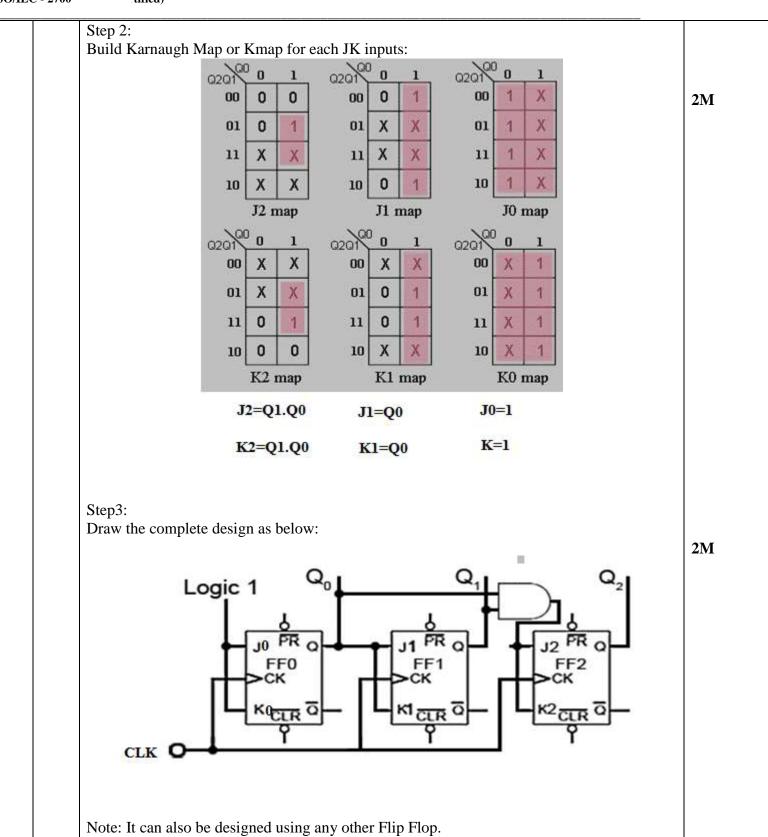
	Logic ='1' Logic ='1' Logic ='1' Logic ='1' Logic ='1' Logic ='1' R Q R C Q R C Q C C Q C C Q C C C C C C	
	$ \begin{array}{ c c c c c c c c } \hline Truth Table: \\ \hline \hline State & Q_D & Q_C & Q_B & Q_A \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 & 0 & 0 \\ 3 & 0 & 0 & 1 & 1 & 0 \\ 3 & 0 & 0 & 1 & 1 & 1 \\ 4 & 0 & 1 & 0 & 0 & 0 \\ 5 & 0 & 1 & 0 & 1 & 0 \\ 6 & 0 & 1 & 1 & 0 & 1 \\ 6 & 0 & 1 & 1 & 1 & 0 \\ 7 & 0 & 1 & 1 & 1 & 1 \\ 8 & 1 & 0 & 0 & 0 & 0 \\ 9 & 1 & 0 & 0 & 0 & 1 \\ 10 & 1 & 0 & 1 & 0 & 1 \\ 11 & 1 & 0 & 1 & 1 & 0 \\ 12 & 1 & 1 & 0 & 0 & 1 \\ 13 & 1 & 1 & 0 & 0 & 1 \\ 14 & 1 & 1 & 1 & 0 & 0 \\ 15 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{array} $	2M
	Timing Diagram / Waveforms: QA	2M
(c)	Calculate the analog output for 4 bit weighted register type DAC for inputs (i) 1011 (ii) 1001 Assume (V_{fs}) full scale range of voltage is 5V	6M
Ans:	Given: VR = Vfs = 5V Formula Used: $Vo = -VR (B1.2^{-1} + B2.2^{-2} + B3.2^{-3} + B4.2^{-4})$ 1. 1011 $Vo = -VR (B1.2^{-1} + B2.2^{-2} + B3.2^{-3} + B4.2^{-4})$	3M each

30/IEC	3 - 2700	tified)									
		= - 5 (1*1/2 + 0 + 1*	$1/2^3 + 1 * 1/2^4$)			_					
		= -5 (1*1/2 + 1*1/8 - 1)	*								
		= -5 (0.5 + 0.125 + 0.0625) = 3.4375V									
		Vo = 3.4375 V	,								
		2. 1001	2	4							
		$Vo = -VR (B1.2^{-1} + B2.2)$		4.2 ⁻⁴)							
		= -10 (1*1/2 + 0 + 0)	,								
		= -10 (1*1/2 + 0 + 0 + 1 *1/16) = -10 (0.5 + 0.0625) = 2.8125V									
		Vo = 2.8125 V									
0.4		Attempt any TWO of the following:									
Q.6		Attempt any <u>TWO</u> of the follow	wing:			Marks					
						Marks					
		Compare TTL, CMOS and EC	L logic family	on the following	points.						
		(i) Basic Gates									
		(ii) Propogation dealy									
	(a)	(iii)Fan out				6M					
		(iv)Power Dissipation									
		(v) Noise immunity									
		(vi)Speed power product									
	Ans:										
		Parameter	TTL	CMOS	ECL	1M Each					
						paramete					
		Basic gates	NAND	NOR/NAND	OR/NOR						
		Propagation delay	10	70-105	2						
		Fan out	10	50	25						
		Power Dissipation	10mW	1.01mW	40-55mW						
		Noise Immunity	0.2V	5V	0.25V						
		Speed Power Product	100	0.7	100						
	(b)	b) Design a BCD adder using IC 7483.									
	Ans:	ns: (Note: Labeled combinational circuit can be drawn using universal gate also)									
	1 1110	1) To implement BCD adder we		want wome unit	Sur Sure miso)						
		• 4-bit binary adder for initial ac	*								
		• Logic circuit to detect sum greater than 9									
		• One more 4-bit adder to add 0									
		2) The logic circuit to detect sur	m greater than 9	9 can be determine	ed by simplifying the						

Boolean expression of given truth Table.


	- 1	nput	5			Output	
S	S ₂		S ₁		S ₀	Y	
0	0	0			0	0	
0	0		0		1	0	
0	0				0		
0	0		1		1	0	
0	1		0		0	0	
0	45		0		.1	0	
0	1		1		0	0	
0	1		1		1	0	
1	0		0		0	0	
1	0		0 1 1 0 0 1 1		1	0 1 1 1 1 1 1	
1	0				0		
1	0				1		
1	1	30			0		
1	1				1		
1	1				0		
1	1	10	1	1	1	0/1	
	S3S2 S1	S ₀	01	11	10		
	00	0	0	0	0		
S3.S2	01	0	0	0	0	\$3.51	
	11	-	1	1			
	10		0	100			

Truth
Table: 2M


K-Map: **1M**

- 3) Y=1 indicates sum is greater than 9. We can put one more term, C_out in the above expression to check whether carry is one.
- 4) If any one condition is satisfied we add 6(0110) in the sum.
- 5) With this design information we can draw the block diagram of BCD adder, as shown in figure below.

Circuit
Diagram:
3M

State Table and Corresponding Excitation Table (d=don't care)

