

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

e: 22323

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q.N.	Answer	Marking Scheme
<u>.</u> 1.	a) Ans.	Attempt any <u>FIVE</u> of the following: Draw symbol and write truth table of EX-OR gate. Symbol	10 2M
		A B B B B B B B B B B B B B B B B B B B	Symbol 1M
		Inputs Output A B Y 0 0 0 1 0 1 0 1 1 1 1 1	Truth Table 1M

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

b)	Define terms "Minterm" and "Maxterm" with proper example of each.	2M
Ans.	Minterm: Each individual term in the canonical SOP form is called as Minterm. Example: Canonical SOP Y = $ABC + A\overline{BC} + \overline{ABC}$ Each individual term is called minterm	Each Definitio n with example 1M
	Maxterm: Each individual term in the canonical POS form is called as Maxterm. Example: Canonical POS $Y = (A + B) \cdot (A + \overline{B})$ Each individual term is called maxterm	Each Definitio n with example 1M
c) Ans.	Draw symbol of JK flip-flop and write its truth table. Symbol	2M
	$J \circ \qquad $	Symbol 1M
	Inputs Output J_n K_n Q_{n+1} 0 0 Q_n 0 1 0 1 0 1 1 $\overline{Q_n}$	Truth Table 1M

Subject: Digital Techniques & Microprocessor

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject Code:

d)	State importance of pipelining in 8086 microprocessor	<i>2M</i>
Ans.	• In pipelining, while the current instruction is executing, next	
	instruction is fetched using a queue.	Any two
	• Pipelining enables many instructions to be executed at the same	points
	time.	<i>2M</i>
	• It allows execution to be done in fewer cycles.	
	• Speed up the execution speed of the processor.	
	• More efficient use of processor.	
e)	Give any four applications of digital circuits.	<i>2M</i>
Ans.	Applications of digital circuits	
	i) Object Counter	Any
	ii) Dancing Lights	relevant
	iii) Scrolling Notice board	four
	iv) Multiplexer	applicati
	v) Digital Computers	ons
	vi) Washing machines, Television	<i>2M</i>
	vii) Digital Calculators	
	viii) Military Systems	
	1x) Medical Equipments	
	x) Mobile Phones	
	x1) Radar navigation and guiding systems	
P	X11) Microprocessors	214
I)	Define the following terms –	2111
	(1) Physical Address (ii) Effective Address	
	(II) Effective Address	
Ang	(i) Dhysical Addross	
A115.	(1) 1 Hysical Address (Note: Diagram is Ontional)	Fach
	Physical: The address given by BIU is 20 bit called as physical	definitio
	address. It is the actual address of the memory location accessed by	n
	the microprocessor. It is calculated as	1M
	1	

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

	(ii) Effective Address Effective Address: Effective address or the offset address is the offset for a memory operand. It is an unassigned 16 bit number that gives the operand's distance in bytes from the beginning of the segment.	
g)	Choose instruction for following situations: (i) Addition of 16 bit Hex. No with carry (ii) Division of 8 bit No. (iii) Rotate content of BL by 4 bit. (iv) Perform logical AND operation of AX and BX	2M
Ans	 (i) Addition of 16 bit Hex. No with carry (<i>Note any other relevant registers shall also be considered</i>) ADC Destination 16, Source 16 OR ADC AX, BX OR ADC AX, 4500H (ii) Division of 8 bit No. (<i>Note any other relevant registers shall also be considered</i>) DIV SOURCE OR DIV BL 	Each instructi on ½ M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & MicroprocessorSubject Code:

		(iii)Rotate content of BL by 4 bit.	
		MOV CL.04H	
		ROR BL. CL	
		OR	
		MOV CL, 04H	
		ROLBLCL	
		(iv) Perform logical AND operation of AX and BX	
		AND AX BX	
2		Attempt any THREE of the following:	12
4.	a)	Convert following decimal to octal and Hevadecimal	12 4M
	a)	$(207)_{10} = ($	7171
		$ \begin{array}{l} 1 & (277)_{10} - (38) \\ 3 & 3 & (273)_{10} - (38) \\ 3 & 3 & 3 & 3 & 3 & 3 \\ 3 & 3 & 3 & 3 & 3 & 3 \\ 3 & 3 & 3 & 3 & 3 & 3 \\ 3 & 3 & 3 & 3 & 3 & 3 \\ 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ 3 & \mathbf$	
		$\mathbf{n} (433)_{10} - (116)_{16}$	Fach
	Ang	$(i) (207)_{i0} = ()_{0}$	Luch
	Alls.	(1)(237)10 - (38)	conversi
		8 297	
			2111
		$\frac{8}{37}$ \rightarrow (LSD)	
		8 4 5	
		$ \longrightarrow 4 \longrightarrow (msn) $	
		((207) - (451)	
		$(297)_{10} = (-757)_{8}$	
		$(ii) (453)_{10} = ()_{16}$	
		$(453)_{1} - (0)_{1}$	
		(100)0 - (7)16	
		16/453 (Decimal) (Hex)	
		16/28 5	
		161 5 (LSD)	
		$12 \rightarrow c \uparrow$	
		$1 \rightarrow 1 (m_{SD})$	
		$(105)_{10} = (105)_{16}$	

b)

Subject: Digital Techniques & Microprocessor

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER - 2018 EXAMINATION **MODEL ANSWER**

Convert the given minterm into standard POS form. **4**M $Y(A, B, CD) = (\overline{A}, BC) + (B, \overline{C} \overline{D}) + (\overline{A} \overline{B})$ Ans. Note: Solution is given by considering Y(A, B, CD) as Y(A, B, C, D)Y(A,B,C, D)= ABC+BED+AB Standar Converting into standard saf form, Y(A, B, C, D)= ABC (D+D) + (A+A) BCD + AB CC+C) (D+D) d SOP form $= \overline{ABCO} + \overline{ABCO} + ABCO + \overline{ABCO} + \overline{ABC$ 2M + ABCD+ABCD = zm(7,6,12,4,3,2,1,0) = 2 m(0, 1, 2, 3, 4, 6, 7, 12)Conversi $= TT M (5, 8, 9, 10, 11, 13, 14, 15) \dots \text{Standard Pos form}$ = $(A + \overline{B} + c + \overline{D}) (\overline{A} + \overline{B} + c + D) (\overline{A} + \overline{B} + c + \overline{D})$ $(\overline{A} + \overline{B} + \overline{c} + D) (\overline{A} + \overline{B} + \overline{c} + \overline{D}) (\overline{A} + \overline{B} + c + \overline{D})$ $(\overline{A} + \overline{B} + \overline{c} + D) (\overline{A} + \overline{B} + \overline{c} + \overline{D}).$ on to Standar d POS *2M*

	· `	
c) Ans.	Draw symbol and write truth table for the following flip flop and give one application of each. i) Clocked R-S flip flop ii) T- flip flop (i) Clocked R-S flip flop Symbol	<i>4M</i>
	S RS. Clock Alip R R	Symbol ½ M

22323

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

$\frac{\circ}{1} \times \frac{\circ}{2} \times \frac{\circ}{2n} \times $		Clock	S	R	Qnt	1 m	0.	Tri
$\frac{1}{1} 0 0 Qn \overline{Qn} \overline{Qn} No \ Change}{1 0 1 Qn} \frac{1}{Qn} No \ Change}$ $\frac{1}{1} 0 1 0 1 Reset}{1 1 1 0 1 Reset} Any$ i) Clocked RS flip-flop can be used in sequential circuits. ii) It can be used to design counters. iii) It can be used as a latch in digital circuits. (ii) T- flip flop Symbol $\frac{1}{1 Q} T Q}{1 Q Qn \overline{Qn} \overline{Qn} No \ Change} Sym_{1/2}$	2 H 100	0	X	×	Qn	Qn Qn	Kemark	tab
$\frac{1}{1} \frac{0}{1} \frac{1}{0} \frac{1}{1} \frac{0}{1} \frac{1}{Reset}$ $\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{0}{Race} \frac{1}{Reset}$ $\frac{1}{1} \frac{1}{1} \frac{1}{Race} \frac{1}{Race} \frac{1}{Roce} \frac{1}{Roce}$ $\frac{1}{Race} \frac{1}{Race} \frac{1}{Roce} \frac{1}{Roce} \frac{1}{Roce}$ $\frac{1}{Race} \frac{1}{Race} \frac{1}{Roce} \frac{1}{Roce} \frac{1}{Roce} \frac{1}{Roce}$ $\frac{1}{I} \frac{1}{I} \frac{1}{I} \frac{1}{Race} \frac{1}{Race} \frac{1}{Roce} \frac$			O	0	Qn	Qn	No Change	11
Image:		1	0	1,	0	1	o change	
Application:RaceRaceSeti) Clocked RS flip-flop can be used in sequential circuits.Anyii) It can be used to design counters.ioiii) It can be used as a latch in digital circuits. $\frac{1}{2}$ (ii) T- flip flopSymbolSymbol $\frac{1}{7}$ $\frac{1}{$			<u> </u>	D	1	0	Reset	
Application: Any i) Clocked RS flip-flop can be used in sequential circuits. App ii) It can be used to design counters. io iii) It can be used as a latch in digital circuits. $\frac{1}{2}$ (ii) T- flip flop Symbol Image: Clock Image: FF Image:		•	1	1	Race	Race	Avoid	
	Symb	ol		T	, (e		Syn 1/2
	Truth	Table	ock		FF (Tri
	Truth		ock T		FF (n+1		Tri tab 11
T anti O an	Truth		T		GEF (n+1 en		Tri tal 11
$\frac{1}{\overline{Q}}$	Truth		T		C C C	n+1 en In		Tri tal 11

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

		Application: i) Used to design counters in digital circuits. ii) Can be used in frequency divider circuits.	Any one Applicat ion ½ M
	d) Ans.	Prove $A(\overline{A} + C)(\overline{A}B + C)(\overline{A}BC + \overline{C}) = 0$ Note: Any other relevant laws applied shall be considered while obtaining the correct answer.	<i>4M</i>
		L'H'S. $= A(\overline{A}+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C))$ $= (co+AC)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C)(C+C))$ $= (co+AC)(\overline{A}B+C)(C+C)(C+C)(C+C)(C+C))$ $= (co+AC)(\overline{A}B+C+C)(C+C)(C+C)(C+C)(C+C))$ $= A\overline{A}B+C+AC\overline{C}$ $= (c+AC)(\overline{A}B+C+C)(C+C)(C+C)(C+C))$ = 0 = 0 = 0 $= R \cdot H \cdot S \cdot$ Hence Proved	Correct solution 4M
3	a)	Attempt any <u>THREE</u> of the following: Implement OR gate and NOT gate using "Universal NAND gate". Write expressions for both.	12 4M
	Ans.	1. "OR" gate using "Universal NAND" gate:	
			Output Expressi on 1M
			Circuit Diagram 1M

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

	2. "NOT" gate using "Universal NAND" gate: $Y = \overline{A \cdot B} = \overline{A \cdot A} \qquad \dots \text{ since } A = B = A$ But $A \cdot A = A \qquad \therefore \boxed{Y = \overline{A}}$ $A = B = A \qquad B = A \qquad (Output)$	Output Expressi on 1M Circuit Diagram 1M
b)	Explain following instructions for 8 bit and 16 bit data. (i) PUSH (ii) DAA (iii) IDJV (iy) XOR	4M
Ans	 Note: Any other relevant registers shall also be considered in the example/explanation. (i) PUSH Format: PUSH source This instruction decrements the SP (Stack Pointer) register (by 2) and copies the word specified by source to the location at the top of the stack. Here, Source can be a 16-bit general purpose register, segment register or memory location. Example- PUSH AX OR PUSH AX This instruction decrements the stack pointer by 2 and copies the 16 bit data from AX register to the stack segment where the stack pointer then points. 	Explain ation of each ¹ / ₂ M Example for each case ¹ / ₂ M

WINTER - 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

	 (ii) DAA DAA stands for Decimal Adjust Accumulator AL after BCD Addition Explanation: This instruction is used to make sure the result of adding two packed BCD numbers is adjusted to be a correct BCD number. The result of the addition must be in AL for DAA instruction to work correctly. If the lower nibble in AL after addition is > 9 or Auxiliary Carry Flag is set, then add 6 to lower nibble of AL. If the upper nibble in AL is > 9H or Carry Flag is set, and then add 6 to upper nibble of AL. Example: - (Any Same Type of Example) 	
	if AL=99 BCD and BL=99 BCD Then ADD AL, BL	
	1001 1001 = AL= 99 BCD + 1001 1001 = BL = 99 BCD	
	0011 0010 = AL =32 H and CF=1, AF=1 After the execution of DAA instruction, the result is CF = 1 0011 0010 =AL =32 H AH =1 + 0110 0110	
	1001 1000 =AL =98 in BCD same type example for 16 bit can be considered.	
	OR DAA instruction is used to convert the sum of two packed BCD numbers in the register AL into a correct BCD number. Example :	
	MOV AL, 23H MOV BL, 47H ADD AL, BL DAA After the execution of the above instructions, the result in AL = 70H.	

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

(NOTE: CONSIDER THE GIVEN INSTRUCTION AS IDIV): Syntax : IDIV source It divides a signed word in AX by an signed byte in source during 16/8 division. Also it is used to divide a signed double word in DX,AX by an signed word in source during 16/8 division. operation: a. if the source is byte then AL \leftarrow AL/signed 8 bit source AH \leftarrow AL MOD signed 8 bit source	
b. If the source is word then AX	
OR	
 IDIV BL This instruction is used to divide signed word in AX register by signed byte in BL register. The quotient after division will be stored in AL register, whereas the remainder is stored in AH register. IDIV BX This instruction is used to divide signed double word in DX,AX register by signed word in BX register. The signed 16 bit quotient will be stored in AX register, whereas the signed 16 bit remainder is stored in AH register. 	
 (iv) XOR – Used to perform Exclusive-OR operation over each bit in a byte/word with the corresponding bit in another byte/word. Syntax: XOR Destination, Source Example: For 8bit data: XOR AL, BL 	
This instruction performs Exclusive-OR bit by bit at AL with BL and the result is stored in AL For 16bit data: XOR AX, BX This instruction performs Exclusive-OR bit by bit word at AX with	

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

c) Ans.	Draw waves for positive and negative triggering with proper labeling. Identify two situations where these triggering can be used? Note: Any additional relevant point related to triggering situation shall be considered	4M
	Positive-edge trigger.	Diagram 2M
	Negative-edge trigger.	Any relevant situation
	 Edge triggering can be used in flipflops as clock input. It is used in counters circuits. They can be used in shift registers They can be used to synchronous data. 	where triggerin g is used 2M
d) Ans	Simplify Y=F(A, B,CD) = Σ_{m} (1, 2, 8, 9, 10, 12, 13) + d(4,5) Using K-map and write expression Note: Solution is given considering Y=F(A, B,CD) as Y= F(A, B,C,D)	4M

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

		• K-map representation for the given expression will be - AB O \overline{LP} \overline{CD} \overline{CD} \overline{CD} \overline{CD} \overline{CD} \overline{CD} \overline{AB} \overline{O} \overline{CP} \overline{CD} \overline{CD} \overline{CD} \overline{CD} \overline{AB} \overline{O} \overline{O} $\overline{1}$ $\overline{2}$ $\overline{1}$ $\overline{2}$ \overline{AB} \overline{O} \overline{O} $\overline{1}$ $\overline{2}$ $\overline{1}$ $\overline{2}$ \overline{AB} \overline{O} \overline{O} $\overline{1}$ $\overline{1}$ $\overline{2}$ $\overline{1}$ $\overline{2}$ \overline{AB} \overline{O} \overline{O} \overline{O} \overline{O} \overline{AB} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{AB} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{G} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{G} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{G} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{G} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{G} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{G} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O}	Correct K-map 2M Correct equation 2M
4	a)	Attempt any <u>THREE</u> of the following Suggest "Two instruction" for each of the following addressing modes. (i) Register Addressing Mode. (ii) Direct Addressing Mode (iii) Based Indexed Addressing Mode (iv) Immediate Addressing Mode.	12 4M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

Ans	 i) Register Addressing Mode: a. MOV AX, CX b. AND AL, BL c. ROR AL, CL ii) Direct addressing mode: a.MOV AL, [3000H] b. AND AX,[8000H] 	Conside r any two instructi on, each instructi on
	 c.INC [4712H] iii) Based indexed Addressing mode: 1.MOV AX, [BX][SI] 2.ADD AL, [BX][DI] 3.MOV AX, [BX+SI] iv) Immediate addressing mode: 1.MOV AL, 46H 2. MOV BX, 1234H 3. MOV DX, 0040H 	42 M
b) Ans.	Minimize the expression and draw logic circuit using basic gates. F (A,B,CD) = π m {0, 2, 4, 6, 7, 10, 11, 14, 15} <i>Note: Solution is given considering</i> $Y=F(A, B,CD)$ <i>as</i> $Y=F(A, B,C,D)$	<i>4M</i>
	• K: Map representation for the given expression will be $-$ AB $\begin{pmatrix} CP \\ C+D \\ OC \\ A+B \\ OO \\ A+B \\ OI \\ A+B \\ OI \\ A+B \\ II \\ $	Correct K-Map 2M

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

	Simplificat J Group 2] Group 3] Group 30 The 50 The Implemento	in D- 1 → (QUAD) → ($\overline{B}+\overline{c}$) 2 → (QUAD) → ($\overline{A}+\overline{c}$) 3 → (QUAD) → (A+D) Simplified expression is, ation wing grateo- B C D \overline{B} \overline{C} \overline{D}	$ \frac{\overline{(\overline{B}+\overline{c})} \cdot (\overline{A}+\overline{c}) \cdot (A+D)}{(\overline{A}+\overline{c})} \\ \frac{\overline{(\overline{A}+\overline{c})}}{(\overline{A}+\overline{c})} \\ \frac{\overline{(\overline{A}+\overline{c})}}{Y} \\ \frac{\overline{(\overline{B}+\overline{c})}}{(\overline{A}+\overline{c})} (\overline{A}+\overline{c}) (A+D)} $	Simplifi cation 1M Logic diagram 1M
c)	Compare con diagram of se block	binational and sequen quential circuit and des	atial circuits. Draw block scribe the function of each	4M
Alls.	PARAMETERS	The output of any instant of time	SEQUENTIAL CIRCUIT	Ally 2 difforon
	Definition	depends upon the input present at that	depends upon the present input as well	Ces
		instant of time.	as past input and output.	2M
	Need of Memory	No memory element required in the ckt	Memory element required to stored bit	
		•		
	Need of clock	Clock input not necessary	Clock input necessary	
	Need of clock Examples	Clock input not necessary E.g. Adders, Subtractors ,Code	Clock input necessary E.g. Flip flop, Shift registers, counters	
	Need of clock Examples	Clock input not necessary E.g. Adders, Subtractors ,Code converters, comparators etc.	Clock input necessary E.g. Flip flop, Shift registers, counters etc,	
	Need of clock Examples Applications	Clock input not necessary E.g. Adders, Subtractors ,Code converters, comparators etc. Used to simplify Boolean	Clock input necessary E.g. Flip flop, Shift registers, counters etc, Used in counters & registers	

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

8.

Instruction Set

format

Subject Code:

22323

	In	puts	Combinational logic circuit Memory element	→ Output	Block diagram 1M
1 or ir 2 fe 3 fe	. Sequential n the prese nput signal. . Sequentia eedback circ . Sequentia eedback circ	l logic circ nt value o l circuit ca cuit. al circuit u cuit in orde	check cuits are those, whose of f the input but also on an be considered as con- uses a memory element er to store past values.	output depends not only previous values of the mbinational circuit with nt like flip – flops as	Explana tion 1M
d) i)) Differenti	ate betwee	en RISC and CISC pro	ocessor (Three point)	4M
Ans i)) Differenti	ate betwee	en RISC and CISC pro	ocessor (Three point)	
	Sr. PAR	AMETER	RISC PROCESSOPR	CISC PROCESSOR	Any
	1. Instru	uction set	Few instructions	More instructions	three
	2. Dat	ta types	Few data types	More data types	points 2M
	3. Add	dressing mode	Few Addressing modes	More Addressing modes	
	4. Re	egisters	Large number of general purpose registers	Small number of general purpose registers & special	
			8	purpose registers.	
	5. Arcl	hitecture	Load/store architecture	purpose registers. No load/store	
	5. Arcl 6. Op	hitecture type peration	Load/store architecture Single- cycle	purpose registers. No load/store architecture Multi-cycle	

Fixed length

Variable length

WINTER – 2018 EXAMINATION MODEL ANSWER

Subj	ject: Digit	al Techniques	& Microprocessor		Subject Code:	22323
		ii) Compare 8	086 and 80586 (Pentiu	m)(3 point	s)	Any
		SR. NO	PARAMETER	8086	80586 (Pentium)	three points
		1.	Data Bus	16 bit	64 bit	2M
		2	Address Bus	20 bit	32 bit	
		3	Physical memory	1 MB	4 GB	
		4	Register size	16 bit	32 bit	
		5	Voltage required	5 V	3.3 V	
		6	Clock type	1x	3x	
		7	Pipelining	Yes	Yes	
	Ans.	proper labels	$\begin{array}{c} D_{0} & - & D_{0} \\ D_{1} & - & D_{1} \\ D_{2} & - & D_{2} \\ D_{3} & - & D_{2} \\ D_{4} & - & D_{2} \\ D_{5} & - & D_{1} \\ D_{5} & - & D_{1} \\ D_{6} & - & D_{2} \\ D_{7} & - & D_{3} \\ D_{6} & - & D_{2} \\ D_{7} & - & D_{3} \\ D_{6} & - & D_{2} \\ D_{7} & - & D_{3} \\ D_{10} & - & D_{2} \\ D_{10} & - & D_{2} \\ D_{11} & - & D_{2} \\ D_{13} & - & D_{1} \\ D_{14} & - & D_{2} \\ D_{15} & - & D_{3} \\ \end{array}$	$ \begin{bmatrix} D_0 & 4:1 \\ D_1 & MUX \\ D_2 & (5) \\ D_3 & S_1 & S_0 \\ S_3 & S_2 \\ S_1 & S_2 \\ S_1 & S_2 \\ S_2 & S_1 \\ S_2 & S_2 \\ S_1 & S_2 \\ S_1 & S_2 \\ S_2 & S_2 \\ S_2 & S_2 \\ S_2 & S_2 \\ S_1 & S_2 \\ S_2 & S_2 \\ S_2 & S_2 \\ S_2 & S_2 \\ S_2 & S_2 \\ S_1 & S_2 \\ S_2 & S_2 \\ S_2 & S_2 \\ S_2 & S_2 \\ S_1 & S_2 \\ S_2 & S_2 \\ S_3 & S_2 \\ S_4 & S_5 \\ S_5 & S_5$	Output lect i/p's Data i/ps.	Correct Diagram 3M Proper Labeling 1M

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

5		Attempt any <u>TWO</u> of the following:	12
	a)	Write algorithm and 8086 assembly language program to find	
		average salary of five employees of "SILICON Systems". Assume	6M
		4 digit salary of each employee. Also write output.	
	Ans.	Note: Any other correct logic shall be considered.	
		ALGORITHM	Algorith
		1. START	m
		2. DEFINE ARRAY SALARY OF 5 NUMBERS EACH 4 DIGIT IN	<i>2M</i>
		DATA SEGMENT	
		3. DEFINE VARIABLE AVG TO STORE RESULT IN DATA	
		SEGMENT	
		4. MOVE DATA IN AX	
		5. MOVE DATA FROM AX TO DS	
		6. MOVE NUM1 TO CX TO SET COUNTER	
		7. LOAD ADDRESS OF ARRAY SALARY TO BX	
		8. MOVE 0000H TO AX	
		9. ADD CONTENTS OF MEMORY POINTED BY BX TO AX	
		10. IF NO CARRY, GOTO STEP 12	
		11. INCREMENT DX REGISTER	
		12. INCREMENT BX TWICE TO POINT TO NEXT NUMBER	
		13. DECREMENT COUNTER CX: IF NOT ZERO GOTO STEP 9	
		14. DIVIDE THE SUM BY NUM1	
		15. STORE THE RESULT AX INTO AVG	
		16 END	
		PROGRAM	
		DATA SEGMENT	
		SALARY DW 4000H 5000H 6000H 7000H 8000H	
		NUM1 DW 05H	
		AVG DW ?	Program
		DATA ENDS	3M
		CODE SEGMENT	0111
		ASSUME DS:DATA_CS:CODE	
		START.	
		MOV AX.DATA	
		MOV DS.AX	
		MOV CX.NUM1	
		MOV BX. OFFSET SALARY	
		MOV AX.0000H	
		MOV BA, OFFSET SALAK I MOV AX,0000H	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

	L1: ADD AX, [BX] JNC NEXT INC DX NEXT: INC BX INC BX LOOP L1 DIV NUM1 MOV AVG,AX MOV AH,4CH INT 21H CODE ENDS END START Output AVG=6000H	Output 1M
b)	Refer Fig No. 1 and write truth table and output "Y", write expression at output of gates. Redraw the Fig. No. 1."Imputs OutputImputs OutputA B C D Y0 0 0 0 01 1 11 1 11 1 11 1 11 1 1Fig No.1	6M

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

Ans $Truth Table$ Output A B C D Y 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 0 0 1 3 1 0 1 0 0 0 0 1 3 3 1 0 1 0 0 0 0 1 3 3 1 1 0 1 0 0 0 1 1 3	
Ans Input Output A B C D Y 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 0 0 1 1 3 1 0 1 0 0 0 0 1 3 3 1 0 1 0 0 0 0 1 3 3 1 1 0 1 0 0 0 1 1 3	
A B C D Y 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Ans 0	
Ans 0 0 1 0 0 1 1 1 0 1 0 1	
Ans 0 0 1 0 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ans
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
A B C D	
$A\overline{B} + \overline{A}B$ $On a$ $Output$ $Of gata$ SM $A\overline{B} + \overline{A}B$ $Output$ $Of gata$ SM $A\overline{B} + \overline{A}B$ $A\overline{B} + \overline{A}B$ $Output$ $Of gata$ SM	

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

 a) Draw architectural block diagram of 8086 microprocessor and describe the function of each block. Ans Note: Any other relevant diagram shall be considered. Internal architecture of Intel 8086: Intel 8086 is a 16 bit integer processor. It has 16-bit data bus and 20-bit address bus. The internal architecture of Intel 8086 is divided into two units, 1. Bus Interface Unit (BIU) 2. Execution Unit (EU). Bus Interface Unit (BIU) 3. Execution Unit (BIU) 3. Execution Unit (BIU) 4. Execution Unit (BIU) 6. Explanal memory (ROM/RAM). 8086 has a single memory interface. Instruction Byte queue: To speed up the execution, 6-bytes of instruction are fetched in advance and kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 	6		Attempt any <u>TWO</u> of the following:	12
describe the function of each block.Mote: Any other relevant diagram shall be considered.Internal architecture of Intel 8086:Internal architecture of Intel 8086:Intel 8086 is a 16 bit integer processor. It has 16-bit data bus and 20- bit address bus. The internal architecture of Intel 8086 is divided into two units,1. Bus Interface Unit (BIU)2. Execution Unit (EU).Bus Interface Unit (BIU)3. Execution Unit (EU).Bus Interface Unit (BIU)Memory Interface: The Bus Interface Unit (BIU) generates the 20-bit physical memory 		a)	Draw architectural block diagram of 8086 microprocessor and	6M
AnsNote: Any other relevant diagram shall be considered. Internal architecture of Intel 8086: Intel 8086 is a 16 bit integer processor. It has 16-bit data bus and 20- bit address bus. The internal architecture of Intel 8086 is divided into two units, I. Bus Interface Unit (BIU) 2. Execution Unit (EU). Bus Interface Unit (BIU) Memory Interface: The Bus Interface Unit (BIU) generates the 20-bit physical memory address and provides the interface with external memory (ROM/RAM). 8086 has a single memory interface. Instruction Byte queue: To speed up the execution, 6-bytes of instruction are fetched in advance and kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations.			describe the function of each block.	
Internal architecture of Intel 8086: Intel 8086 is a 16 bit integer processor. It has 16-bit data bus and 20- bit address bus. The internal architecture of Intel 8086 is divided into two units, I. Bus Interface Unit (BIU) 2. Execution Unit (EU). Bus Interface Unit (BIU) 9 Memory Interface: The Bus Interface Unit (BIU) generates the 20-bit physical memory address and provides the interface with external memory (ROM/RAM). 8086 has a single memory interface. Instruction Byte queue: To speed up the execution, 6-bytes of instruction are fetched in advance and kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations.		Ans	Note: Any other relevant diagram shall be considered.	
Intel 8086 is a 16 bit integer processor. It has 16-bit data bus and 20- bit address bus. The internal architecture of Intel 8086 is divided into two units, 1. Bus Interface Unit (BIU) 2. Execution Unit (EU). Bus Interface Unit (BIU) Memory Interface: The Bus Interface Unit (BIU) generates the 20-bit physical memory address and provides the interface with external memory (ROM/RAM). 8086 has a single memory interface. Instruction Byte queue: To speed up the execution, 6-bytes of instruction are fetched in advance and kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations.			Internal architecture of Intel 8086:	Explana
bit address bus. The internal architecture of Intel 8086 is divided into two units, 1. Bus Interface Unit (BIU) 2. Execution Unit (EU). Bus Interface Unit (BIU) memory Interface: The Bus Interface Unit (BIU) generates the 20-bit physical memory address and provides the interface with external memory (ROM/RAM). 8086 has a single memory interface. Instruction Byte queue: To speed up the execution, 6-bytes of instruction are fetched in advance and kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations.			Intel 8086 is a 16 bit integer processor. It has 16-bit data bus and 20-	tion of
two units,3M1. Bus Interface Unit (BIU)2. Execution Unit (EU).Bus Interface Unit (BIU)Memory Interface:The Bus Interface Unit (BIU) generates the 20-bit physical memory address and provides the interface with external memory (ROM/RAM). 8086 has a single memory interface.Instruction Byte queue:To speed up the execution, 6-bytes of instruction are fetched in advance and kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution Unit (EU).Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register.Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit.2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations.			bit address bus. The internal architecture of Intel 8086 is divided into	blocks
 1. Bus Interface Unit (BIU) 2. Execution Unit (EU). Bus Interface Unit (BIU) Memory Interface: The Bus Interface Unit (BIU) generates the 20-bit physical memory address and provides the interface with external memory (ROM/RAM). 8086 has a single memory interface. Instruction Byte queue: To speed up the execution, 6-bytes of instruction are fetched in advance and kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			two units,	<i>3M</i>
 2. Execution Unit (EU). Bus Interface Unit (BIU) Memory Interface: The Bus Interface Unit (BIU) generates the 20-bit physical memory address and provides the interface with external memory (ROM/RAM). 8086 has a single memory interface. Instruction Byte queue: To speed up the execution, 6-bytes of instruction are fetched in advance and kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			1. Bus Interface Unit (BIU)	
 Bus Interface Unit (BIU) Memory Interface: The Bus Interface Unit (BIU) generates the 20-bit physical memory address and provides the interface with external memory (ROM/RAM). 8086 has a single memory interface. Instruction Byte queue: To speed up the execution, 6-bytes of instruction are fetched in advance and kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			2. Execution Unit (EU).	
 Memory Interface: The Bus Interface Unit (BIU) generates the 20-bit physical memory address and provides the interface with external memory (ROM/RAM). 8086 has a single memory interface. Instruction Byte queue: To speed up the execution, 6-bytes of instruction are fetched in advance and kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			Bus Interface Unit (BIU)	
The Bus Interface Unit (BIU) generates the 20-bit physical memory address and provides the interface with external memory (ROM/RAM). 8086 has a single memory interface. Instruction Byte queue: To speed up the execution, 6-bytes of instruction are fetched in advance and kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations.			Memory Interface:	
 address and provides the interface with external memory (ROM/RAM). 8086 has a single memory interface. Instruction Byte queue: To speed up the execution, 6-bytes of instruction are fetched in advance and kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			The Bus Interface Unit (BIU) generates the 20-bit physical memory	
 (ROM/RAM). 8086 has a single memory interface. Instruction Byte queue: To speed up the execution, 6-bytes of instruction are fetched in advance and kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			address and provides the interface with external memory	
 Instruction Byte queue: To speed up the execution, 6-bytes of instruction are fetched in advance and kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			(ROM/RAM). 8086 has a single memory interface.	
 To speed up the execution, 6-bytes of instruction are fetched in advance and kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			Instruction Byte queue:	
 advance and kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			To speed up the execution, 6-bytes of instruction are fetched in	
 instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			advance and kept in a 6- byte Instruction Queue while other	
 Segment registers: There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			instructions are being executed in the Execution Unit (EU).	
 There are four 16-bit segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			Segment registers:	
 the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			There are four 16-bit segment registers, viz., the code segment (CS),	
 (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			the stack segment (SS), the extra segment (ES), and the data segment	
 Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			(DS). The processor uses CS segment for all accesses to instructions	
 Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			referenced by instruction pointer (IP) register.	
 a bit bit produces the 20-bit physical memory address by combining a 16-bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			Adder:	
 controlling a ro-bit segment address with a ro-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			acmbining a 16 bit accment address with a 16 bit offset address using	
 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations. 			the adder circuit	
Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations.			2 Execution Unit:	
queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations.			Control unit : The instructions fetched by BIU in the instruction byte	
Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic & logic operations.			queue are decoded under the control of timing and control signals	
ALU, which performs arithmetic & logic operations.			Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit	
Tille, which performs artainfede de fogle operations.			ALU, which performs arithmetic & logic operations	
General purpose register unit: All general registers of the 8086			General purpose register unit: All general registers of the 8086	
microprocessor can be used for arithmetic and logic operations. The			microprocessor can be used for arithmetic and logic operations. The	
general registers are: Accumulator register AL (8 bit), AX (AL & AH			general registers are: Accumulator register AL (8 bit), AX (AL & AH	
for 16 bit), Base register, Count register, Data register, Stack Pointer			for 16 bit), Base register, Count register, Data register, Stack Pointer	
(SP), Base Pointer (BP), Source Index (SI), Destination Index (DI).			(SP), Base Pointer (BP), Source Index (SI), Destination Index (DI).	
Flags: is a 16-bit register containing 9 1-bit flags: Overflow Flag			Flags: is a 16-bit register containing 9 1-bit flags: Overflow Flag	

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject Code: Subject: Digital Techniques & Microprocessor ∢ А ➤ Sum Full Adder В ➤ C - Out C - IN -**Truth Table** Input Output A в Cin Sum Carry Truth Table *2M* Based on the truth table, the Boolean functions for Sum (S) and Carry - out (C_{out}) can be derived using K - Map. For Sum S : BC_{IN} 00 A

WINTER – 2018 EXAMINATION MODEL ANSWER

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

c)	Write an assembly language program to find the largest number	6M
	from an array of a 10 numbers. Assume suitable data.	
Ans	Note: Either 8bit or 16bit data shall be considered.	
	DATA SEGMENT	
	ARR DB 1,4,2,3,9,8,6,7,5,10	
	LN DW 10	
	LDB?	Correct
	DATA ENDS	logic
	CODE SEGMENT	<i>3M</i>
	ASSUME DS:DATA, CS:CODE	
	START:	
	MOV AX,DATA	
	MOV DS,AX	Correct
	LEA SI,ARR	Instructi
	MOV AL,ARR[SI]	ons
	MOV L,AL	<i>3M</i>
	MOV CX,LN	
	REPEAT: MOV AL,ARR[SI]	
	CMP L,AL	
	JG NOCHANGE (or JNC NOCHANGE)	
	MOV L,AL	
	NOCHANGE: INC SI	
	LOOP REPEAT	
	MOV AH,4CH	
	INT 21H	
	CODE ENDS	
	END START	