

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

MAHARASHT (Autonomous) (IS O/IEC - 2700) BOARD OF TECHNICAL EDUCATION rtified)

SUMMER-19 EXAMINATION

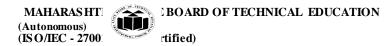
Subject Name: Electric circuits and network

Model Answer

Subject C 22330

1

Important Instructions to examiners:


- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

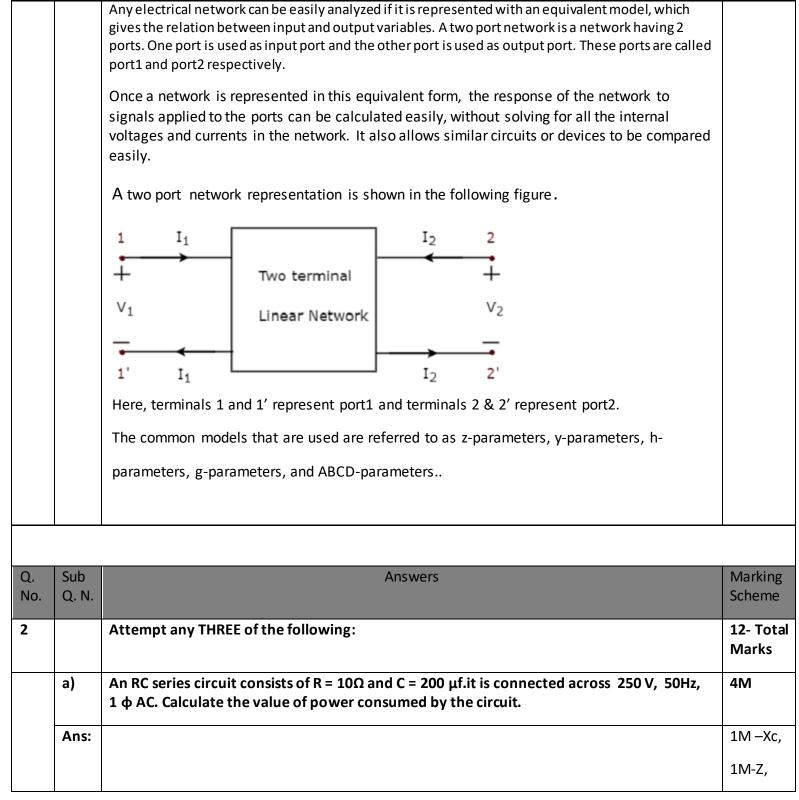
Q. No.	Sub Q. N.	Answers	Marking Scheme
1	(A)	Attempt any FIVE of the following :	10- Total Marks
	(a)	Define impedance and reactance related to single phase AC series circuit. Give unit of both.	2M
	Ans:	Impedance of single phase AC series circuit is defined as the net opposition offered to the flow of AC current by the combination of R, L and C. Unit of Impedance is $\Omega(Ohm)$.	Each correct definitio n with
		Reactance of single phase AC series circuit is defined as the opposition offered to the flow of AC current by either inductor(L) or capacitor(C). Unit of reactance is $\Omega(Ohm)$.	its unit- 1M
	(b)	Draw the impedance triangle for R-L series circuit.	2M

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u>

Subject C 22330

Ans:	*↑	impeda ce
		triangl
	Z/	2M
	XL	
	$\partial \theta$	
	R	
	Fig. impedance triangle for R-L series circuit.	
(c)	State Q factor for parallel R.L.C. circuit.	2M
Ans:	Q factor for parallel R.L.C. circuit is defined as the current magnification provided at	Any
	resonance. The magnitude of current flowing through inductor and capacitor is equal	correc
	to Q times the input sinusoidal current I.	definit
	As the parallel circuit magnifies the current it is also called as the current resonance circuit.	n-2M
	OR	
	The Quality factor of Parallel resonance RLC circuit is defined as the ratio of current	
	circulating between its two branches to the line current drawn from the supply.	
	Mathematically, Q., DY	
	Mathematically, $Q = RX_c$	
(d)	Give four steps to solve nodel analysis.	2M
Ans:	four steps to solve nodal analysis-	Each
	1.all the nodes present in the network including the reference(ground) node)are identified	step - 1/2 M
	and marked . The number of equations to be solved is given by (n-1) where n= no of independent nodes.	1/2 1/1
	2. Mark all the branch currents.	
	3. Using KCL write current equation for each node in terms of node voltage and	
	sources present.	
	4. The equations can be solved either simultaneously or by Cramer's rule to obtain various	

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer


Subject C 22330

	The current flowing through any element can be found out by substituting the value of node voltages in the relevant equation.	
e)	Write the formula for star to delta.	2M
Ans:	The formula for star to delta Star to Delta (Y to Δ) Resistance Conversion Formula V_1 V_2 V_3 $R_a = \frac{R_1R_2 + R_1R_3 + R_2R_3}{R_1}$ $R_b = \frac{R_1R_2 + R_1R_3 + R_2R_3}{R_2}$ $R_c = \frac{R_1R_2 + R_1R_3 + R_2R_3}{R_3}$	Correct formula e with diagran 2M
f)	State Thevenin's theorem.	2M
Ans:	Any network containing active and/or passive elements and one or more dependent and/or independent voltage/or current sources can be replaced by an equivalent network containing a voltage source (Thevenin's equivalent voltage V _{TH} or V _{OC}) and a series resistance (called Thevenin's equivalent resistance R _{TH})where V _{TH} is the voltage measured across open terminals A and B and Rth is the resistance across same terminals A and B when all the sources are replaced by their internal resistances.	Stateme nt (2 Mark
g)	State the significance of two port network.	2M

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network <u>Model Answer</u> Su

Subject C 22330

SOARD OF TECHNICAL EDUCATION MAHARASHT

(ISO/IEC - 2700) rtified)

(Autonomous)

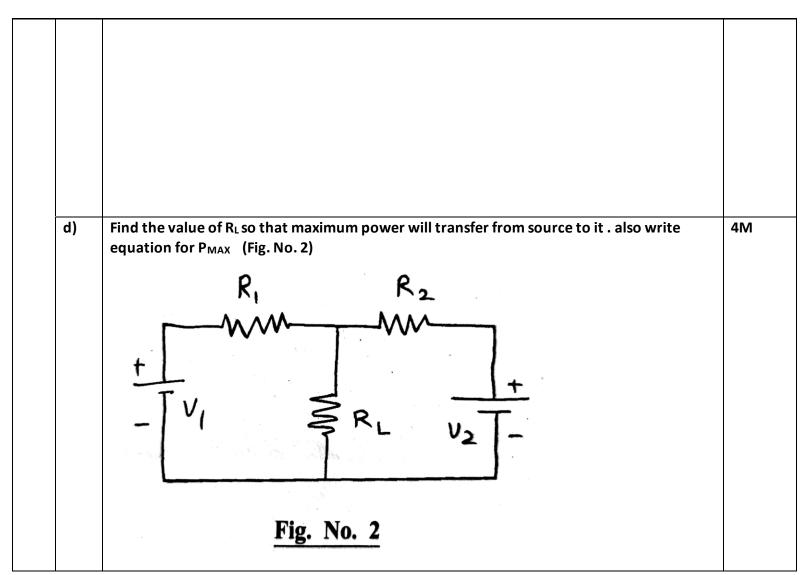
SUMMER-19 EXAMINATION

Subject C 22330 Subject Name: Electric circuits and network Model Answer 5 1M-Power Solution -: Factor. Given -: R=10, c=200 UF, V=250V, f=50 HZ 1M-Power Copocitive Reactance, Xc:consum $X_c = \frac{1}{2\pi fc}$ ed $= \frac{1}{2 \times \pi \times 50 \times 200 \times 10^6}$: Xc = 15.91 2 - Impedence Z: - $|Z| = \int R^2 + X_c^2 = \int 10^2 + (15.91)^2$ ·: 12)=18.79 ~ Now, the total current I: $\therefore I = \frac{V}{Z} = \frac{250}{18.79} = 13.30 \text{ A}$ Power Factor, $\cos \phi = \frac{R}{Z} = \frac{10}{18.79}$ -: P.F. = (05 \$ = 0.53 (leading) And, the value of Power consumed by the circuit is P- $P = V \cdot I(0s \phi)$ = 250× 13.30×0.53 · P = 1762.25 watt OR -: P= 1.7622 Kwatt Scanned with CamScanner Describe the procedure to tune the given electrical circuit using the principles of b) 4M resonance. An electrical circuit can be tuned to resonant frequency in any one of the following ways: 4M Ans:

SUMMER-19 EXAMINATION Subject Name: Electric circuits and network Model Answer

Subject C 22330

c)	cannot be varied, then by using either a variable capacitor or variable inductor, the variable element can be varied till the circuit is tuned to the desired resonant frequency. Find the current in 6Ω resistor in the circuit shown in Fig. No. 1 using mesh analysis.	4N
	$\frac{+}{24V-T}$ $\int 6\Omega + \frac{+}{T} 18V$	


SUMMER-19 EXAMINATION Subject C 22330 Subject Name: Electric circuits and network Model Answer

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network

```
Model Answer
```

Subject C 22330

MAHARASHTI (Autonomous) BOARD OF TECHNICAL EDUCATION

(Autonomous) (IS O/IEC - 2700 rtified)

SUMMER- 19 EXAMINATION Subject Name: Electric circuits and network Model Answer

Subject C 22330

	Ans:		3M-for
		Replace the voltage sources VI and Vz by short circuit to obtain the circuit shown	RL
		Lalara i	1M for
		RI R2 MMM MMM 0	power
		ightarrow = ightarrow RTH = ightarrow RTH = ightarrow RTH = ightarrow RZ	formula
		$\therefore R_{TH} = R_1 I ^d R_2$	
		$\therefore R_{\text{TH}} = \frac{R_1 \times R_2}{R_1 + R_2}$	
		Ri+RZ But the condition for maximum power tourster	
		to the load is -	
		$R_L = R_{TH}$	
		The value of RL = RTY so that moximum	
		power will transfer from source to it.	
		The equation for Pmax -:	
		$P_{L(max)} = \left(\frac{V_{TH}}{R_{TH} + R_{TH}}\right)^2 R_{TH}$	
		Substitute RL=RTH	
		Therefore the power transfer to the load is given by the equation	
		$P_{\rm L} = \frac{V_{\rm TH}^2}{4R_{\rm TH}}$	
		$L = \frac{1}{4R_{TH}}$	
Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
3		Attempt any THREE of the following :	12- Total
			Marks
	a)	List the power factor improves technique and explain any one with advantage and	4M
	aj	disadvantage	4141
	Ans:	Power factor improvement techniques are	2Marks
		i) Synchronous Motors (or capacitors)	for
			Listing Techniq
		ii) Static Capacitors	ues

SUMMER-19 EXAMINATION

Model Answer

Subject Name: Electric circuits and network

Subject C 22330

	iii) I	Phase Advancers			
	ove cor cor ii) Sta mo Sin unl iii) Pha tha	er-excited and, especial recting the power factor rection can be varied by tic Capacitors : They are tors and are practically f ce their capacitance is n less arrangements for au ase Advancers : They are at the economical degree	ly, when they are running i r in bulk and have the special y changing their excitation. e installed to improve the po loss-free (i.e. they draw a cur not variable, they tend to ove itomatic switching of the cap fitted with individual machin	es. However, it may be noted n each case, depends upon the	2Marks for any one techniqu e
b)	Compar	e series resonance to pa	rallel resonance on the basis	of:	4M
	(i) (ii) (iii) (iv)	Resonant frequency Impedance Current and Magnification.			
Ans:					1 marks
	S.No.	Parameter	Series Circuit	Parallel Circuit	for each point
	1	Resonant frequency	$f_r = \frac{1}{2\pi\sqrt{LC}}$	$f_r = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$	
	2	Impedance	Minimum, Z = R	Maximum, Z = L/CR	
		1	1	1	1

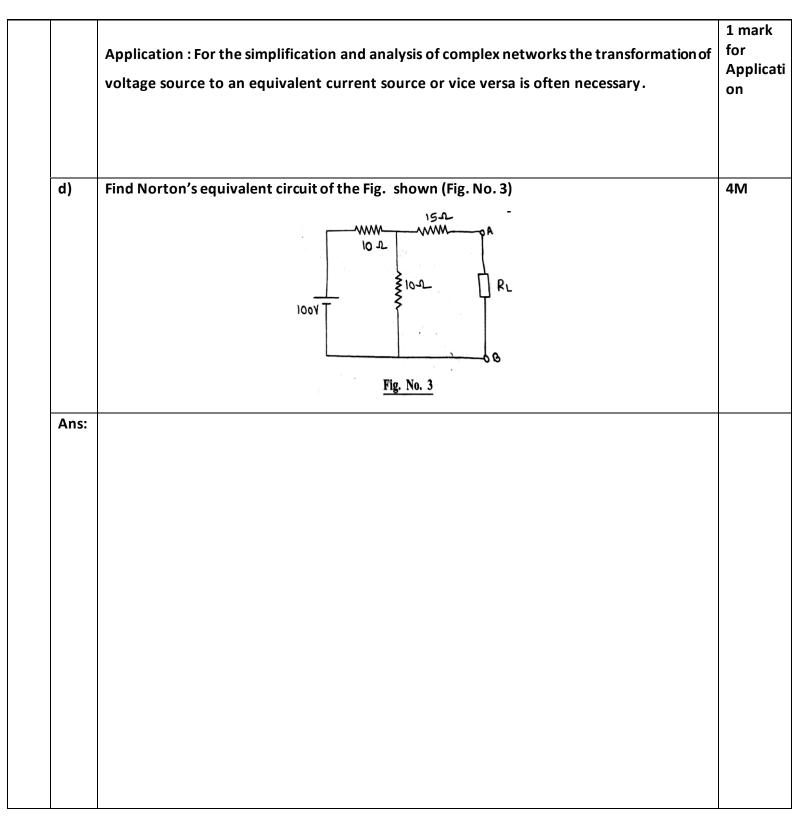
SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network

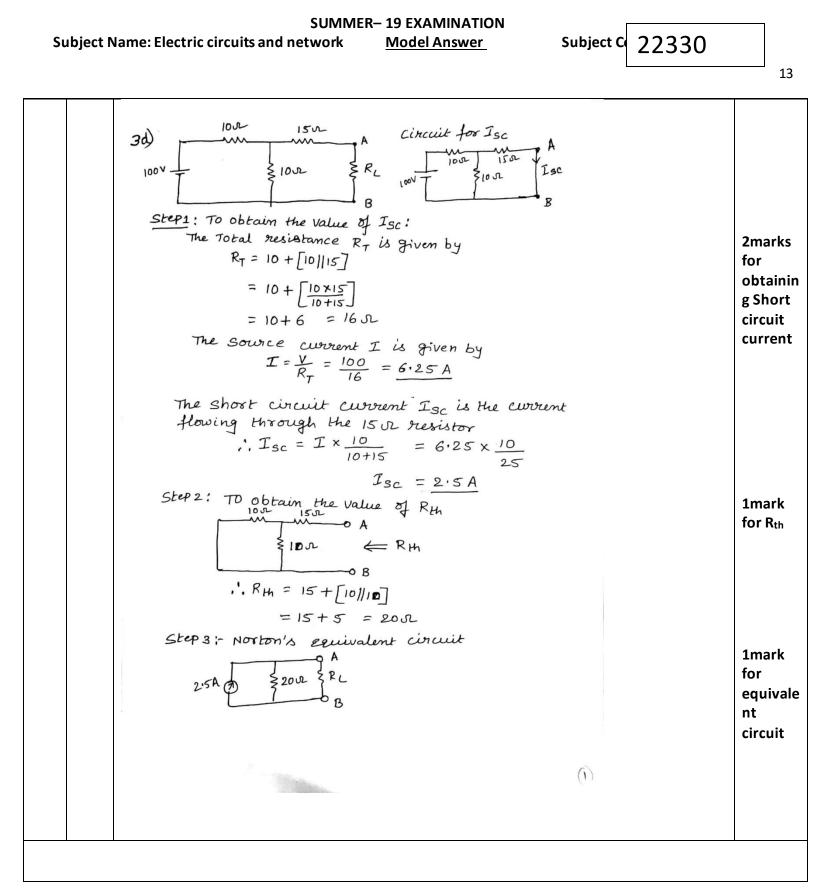
Model Answer

Subject C 22330

	4	Magnification	Voltage magnification takes	Current magnification	
			place	takes place	
c)		•	rt voltage source into equivalent ms of both the sources.	current source. Give its	4M
Ans:	equival	lent current source wit	es resistance can be converted h a parallel resistance.		2 marks for Procedu re
		he value of current sup	tical voltage source into practic		
			nt I=V/R		
	-	alue of resistance whic ne same value of series	h is connected in parallel with th resistance(Rs=Rsh).	ne equivalent current source	
	ii)This e resistar	-	urce is then connected in para	llel with the shunt(parallel)	
		v v			1 mark for diagram



Subject Name: Electric circuits and network


SUMMER-19 EXAMINATION

Model Answer

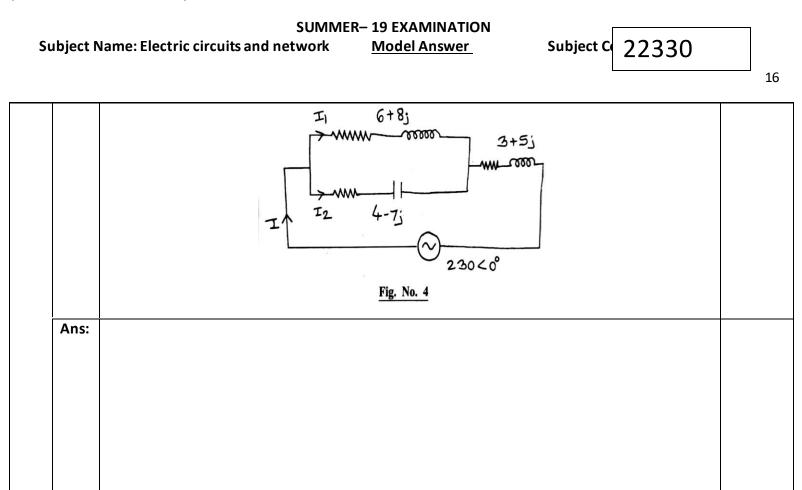
Subject C 22330

MAHARASHT (Autonomous) (IS O/IEC - 2700) BOARD OF TECHNICAL EDUCATION rtified)

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer


Subject C 22330

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
4		Attempt any THREE of the following :	12- Total Marks
	(a)	In a series circuit containing pure resistance pure inductance, the current and voltage are expressed as: I(t) = 5 sin (314t + 2 Π/3) and v(t) = 20 sin (314t + 5 Π/6) Find:	4M
		(i) Impedance of circuit (ii) Resistance of circuit	
		(iii) Inductance in circuit	
		(iv) Average power drawn by circuit.	
	Ans:	I(t) = 5 sin (314t + 2 П/3) and v(t) = 20 sin (314t + 5 П/6)	
		Converting the above standard sinusoidal forms into polar forms	
		Rms values of current and voltage are	
		I = 5/ $\sqrt{2}$ = 3.54 A ; V = 20/ $\sqrt{2}$ = 14.14 V	
		Converting the above standard sinusoidal forms into polar forms	
		Ĩ= (3.54└120°) A	
		<i>V</i> = (14.14 ⊥150°) V	1 mark for
		By Ohm's law,	Impeda nce
		Circuit Impedance, $\vec{Z} = \vec{V} / \vec{I} = (14.14 \lfloor 150^{\circ}) / (3.54 \lfloor 120^{\circ})$	
		= (4 ∐ 30°) Ω	

MAHARASHT (Autonomous) BOARD OF TECHNICAL EDUCATION

(Autonomous) (IS O/IEC - 2700 rtified) ******* · 1**

	SUMMER– 19 EXAN	INATION	Г			
Subje	t Name: Electric circuits and network <u>Model A</u>	nswer	Subject C	22330		
						15
						12
	=(3.46+j2) Ω					
	From polar form of Impedance					
					1 mai	rk
	i) Impedance of circuit = Z = 4 Ω				for	
					Resist	tan
	From Rectangular form of impedance				се	
	ii) Resistance of circuit $R = Z \cos \phi = 4 \phi$	Cos(30) = 3.46 Ω	2			
	iii) Inductance of circuit L					
	we know that $X_L = 2 \Omega$ (from rectangu	lar form of imp	edance)			
			-		1 mai	rk
	$X_L = 2\pi fL$				for Induc	tan
					ce	Lan
	$L = X_L/2\pi f = 2/(2\pi \times 50)$	= 6.37 × 10 ⁻³ H			Ce	
	From polar form of Impedance , ϕ =30°					
	So, pf=cosφ					
	=cos30°					
	=0.866 lagging				1 mai	rk
	iv) Average power, P=VI Cos ϕ				for	
					Avera	age
	= 14.14 x 3.54 x cos30°				powe	er
	=43.35 W					
(6)	Eind L L L nowor factor of the sizewit in Fig. No.				4M	
(b)	Find I, I ₁ ,I ₂ power factor of the circuit in Fig. No.	4			4171	

MAHARASHT (Autonomous) (ISO/IEC - 2700)

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

Subject C 22330

18

• $I_2 = I \times \frac{Z_1}{Z_1 + Z_2} = (20.33 \lfloor -16.52) \frac{(10 \lfloor 53.13)}{(10 \lfloor 5.71)}$ = $(20.33 \lfloor -16.52) (1 \lfloor 47.42)$ $\therefore I_2 = 20.33 \lfloor 30.9^{\circ} A$ Power factor = cos \$\$\$\$\$\$\$\$\$ = cos (-16.52)\$
 = 0.958 (agging)\$ (c) Explain the term bandwidth of a series resonant circuit. Derive its equation. 4M Band width (BW) of a series resonance circuit is defined as the range of frequency over which Explanat Ans: ion 2 circuit current is equal to or greater than $\frac{Ir}{\sqrt{2}}$ or 70.7 % of maximum current where I₀ or I_r = Marks current at resonance. The resonance curve for a series RLC circuit is shown below: f, →f f, ĥ From the graph it is clear that for all frequencies lying between f1 and f2 the circuit current is equal to or greater than 70.7 % of maximum current i.e.

MAHARASHT (Autonomous) CBOARD OF TECHNICAL EDUCATION (Autonomous) (IS O/IEC - 2700 rtified) ****** · 140

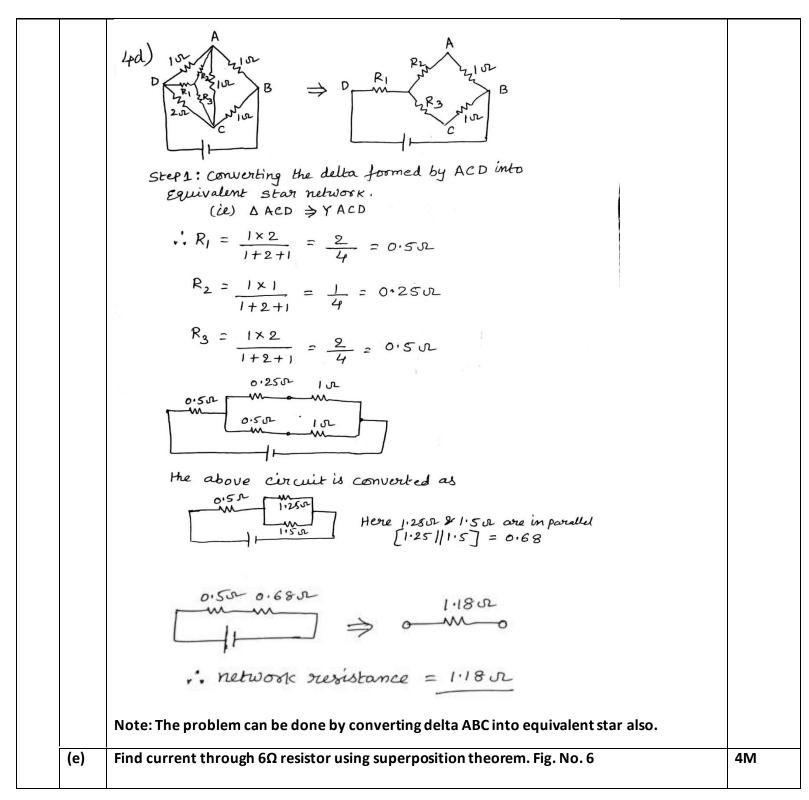
	SUMMER- 19 EXAMINATION	
Subject	Name: Electric circuits and network <u>Model Answer</u> Subject C 22330	
	22000	
		19
	$I_r = V/R$	
	Thus Band width of the circuit, BW = $\Delta f = (f_2 - f_1) Hz$	
	Or BW = $\Delta \omega = (\omega_2 - \omega_1)$ rad/sec	
	Derivation of equation for bandwidth -	
	The relationship between bandwidth , Q factor and resonant frequency is given by	2marks for
	$(f_2 - f_1) = f_r/Q_r$	Derivati on
	Where $f_2 - f_1 =$ bandwidth, f_r =resonant frequency and $Q_r = Q$ factor at resonance	
	But $f_r = \frac{1}{2\pi\sqrt{LC}}$	
	And $\mathbf{Q}_{\mathrm{r}} = \frac{1}{R} \sqrt{\frac{L}{C}}$	
	Substituting these values in the equation for bandwidth,	
	$\Delta \mathbf{f} = \mathbf{f}_{r} / \mathbf{Q}_{r} = \frac{\frac{1}{2\pi\sqrt{LC}}}{\frac{1}{R}\sqrt{\frac{L}{C}}} = \frac{R\sqrt{C}}{2\pi\sqrt{CL^{2}}} = \frac{R}{2\pi L} Hz$	
	Therefore bandwidth $\Delta f = f_2 - f_1 = \frac{R}{2\pi L}$ Hz	
	OR	
	$\Delta \omega = 2\pi \Delta f = \frac{R}{L} rad/sec$	
I		<u> </u>

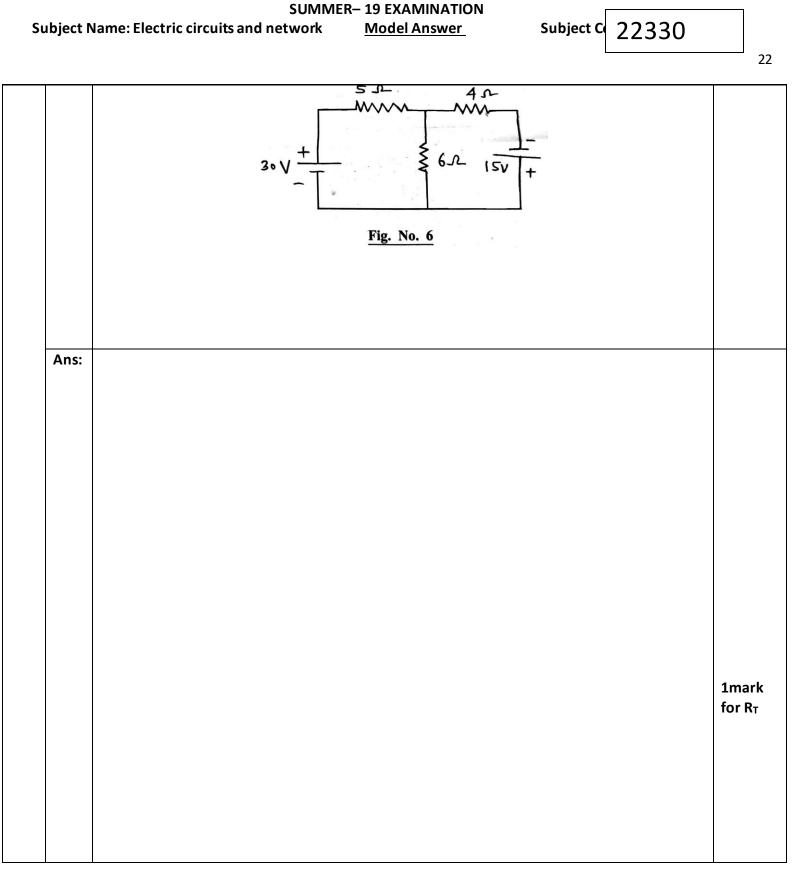
Subject Name: Electric circuits and network

SUMMER-19 EXAMINATION

Model Answer

Subject C 22330


(d)	A bridge network ABCD has arms AB, BC, CD and DA of resistances 1, 1,2 and 1 ohm respectively . If the detector AC has a resistance of 1 ohm, determine by star/delta transformation, the network resistance as viewed from the battery terminals.	4M
	$B = \frac{1 - \Omega_{\text{NNN}}}{2} + \frac{1 - \Omega_{\text{NNN}}$	
Ans:		
		2 marks for Converti ng delta to star
		2 marks for Network resistan ce


SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

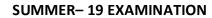
Subject C 22330

MAHARASHT (Autonomous) (ISO/IEC - 2700)

4e) Replace He is v source by a short circuit, kuping sev

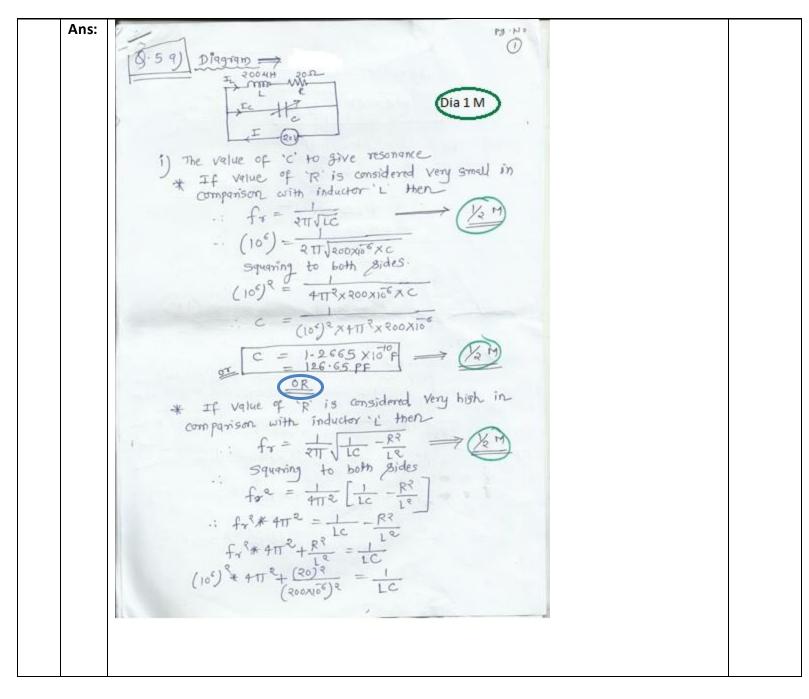
$$3H \int \frac{1}{160} \int \frac{1}{60} \int \frac{1}{160} \int \frac$$

SUMMER-19 EXAMINATION


Subject Name: Electric circuits and network

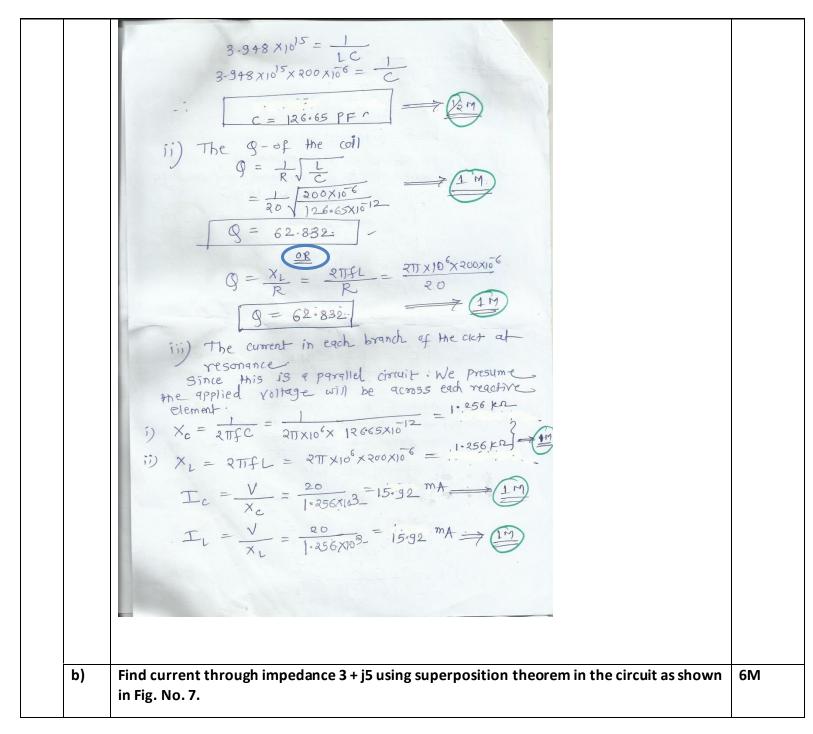
Г

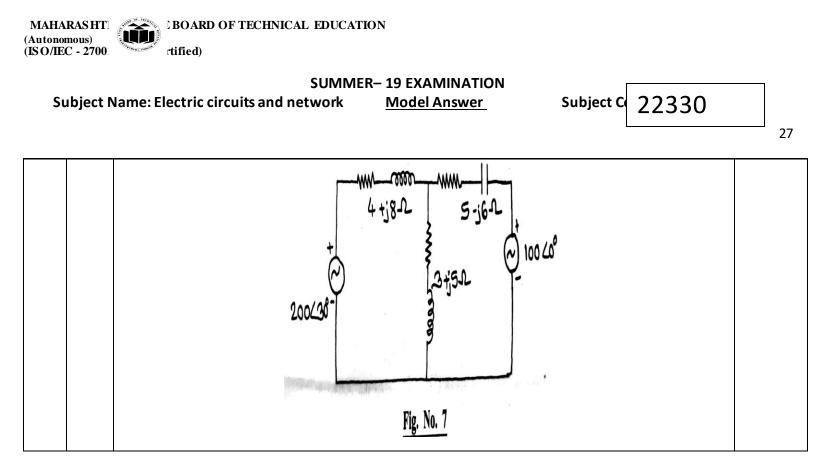
Model Answer


Subject C 22330

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
5.		Attempt any TWO of the following:	12- Total
			Marks
	a)	A coil of resistance 20 Ω and 200 μH is in parallel with a variable capacitor. The voltage of	6M
		the supply is 20 V at a frequency of 10 ⁶ Hz. Calculate :	
		(i) The value of C to give resonance.	
		(ii) The Q of the coil.	
		(iii) The current in each branch of the circuit at resonance.	

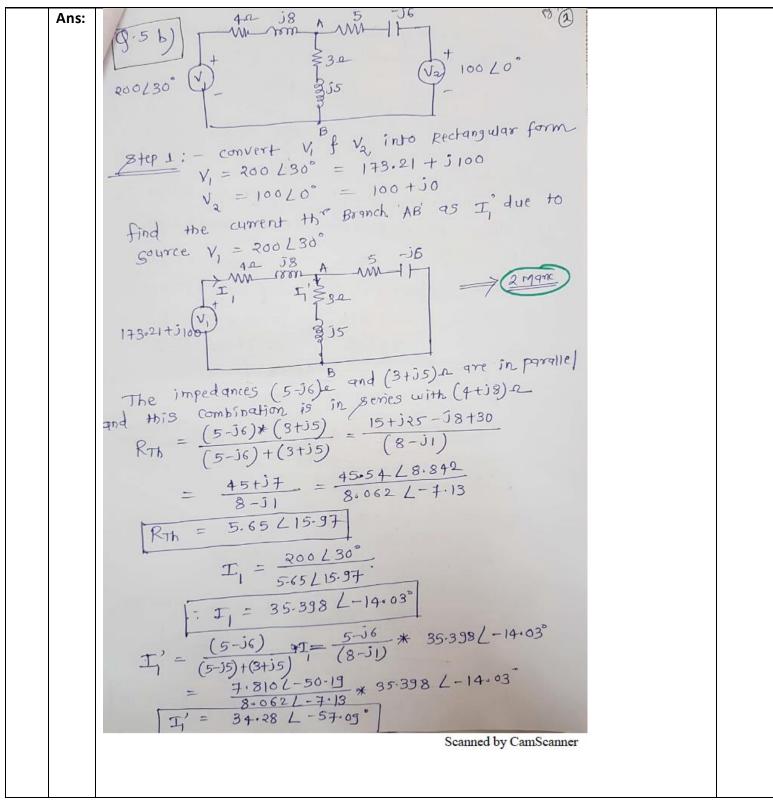
Subject Name: Electric circuits and network Model Answer


Subject C 22330



MAHARASHT (Autonomous) (IS O/IEC - 2700) BOARD OF TECHNICAL EDUCATION rtified)

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer


Subject C 22330

SUMMER-19 EXAMINATION Subject Name: Electric circuits and network Model Answer

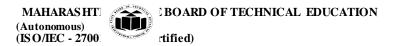
Subject C 22330

SUMMER-19 EXAMINATION Subject C 22330 Subject Name: Electric circuits and network Model Answer

$$\begin{array}{c} \underbrace{\text{Strp } \mathcal{R}^{-}}_{\text{due to: Source }} & \bigvee_{q} = 100 \ \text{LO}^{\circ} \\ \hline \\ & \underset{13}{\text{due to: Source }} & \bigvee_{q} = 100 \ \text{LO}^{\circ} \\ \hline \\ & \underset{13}{\text{due to: Source }} & \bigvee_{q} = 100 \ \text{LO}^{\circ} \\ \hline \\ & \underset{13}{\text{due to: Source }} & \bigvee_{q} = 100 \ \text{LO}^{\circ} \\ \hline \\ & \underset{13}{\text{due to: Source }} & \bigvee_{q} = 100 \ \text{LO}^{\circ} \\ \hline \\ & \underset{13}{\text{due to: Source }} & \underset{13}{\text{due to: Source }} & \underset{10}{\text{due t$$

MAHARASHT (Autonomous) (ISO/IEC - 2700) rtified)

SUMMER-19 EXAMINATION Subject C 22330 Subject Name: Electric circuits and network Model Answer


<u>Brench</u> P3 1000 P3 10 V, is I,' = 34.28 L-57.09 Convert these currents into Rectangular Form I,' = 18.63 - J28.78 II" = 8.823 - J14.71 : I AB Branch = I' + I' : I AB Branch = I, + I, " or c/n the (3+35) Branch = 27-453 - 543.49 · I AB Branch = I (3+35) = 51.43 (57.74) c) Sketch the phasor diagram for the nominal drawn circuit with justification of each phasor 6M drawn. Ans: **Consider series R-L circuit** Circuit diagram phasor diagram of RL circuit :1 Mark Where $V_R = Yoltage$ across the rol R. Phasor VL = Yeltage across the inductor 1 diagram = Total voltage of the circuit :3 Marks TT INL TE

MAHARASHT BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 2700) rtified)

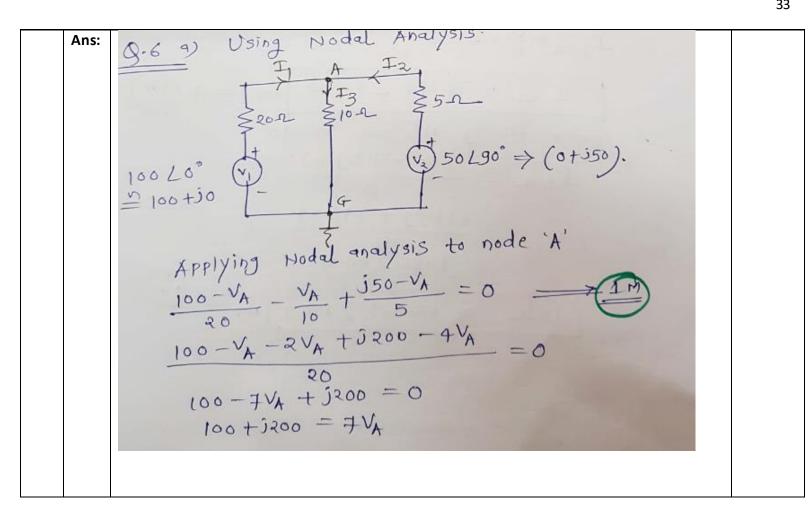
SUMMER-19 EXAMINATION Subject Name: Electric circuits and network Model Answer

Subject C 22330

Explanat Explanation: -Th RL circuit Resistor R & Inductor L' 9m ion :2Marks connected in series with a voltage supply of Vive since both R + 1 are connected in series, so the current in both the elements of the ext remains same. Te IR = IL = I let VR & VL be Voltagree drop across resistor of inductor. In Resistor the voltage VR f IR are in phase. Where as in Inductor, the voltage VL f current - are not in phase . The Voltage leads the current by go: Note: If the student has attempted to solve the question considering any one of the following circuits : Series R-C or R-L-C circuit or Parallel R-L or R-C or R-L-C circuit, give appropriate marks.

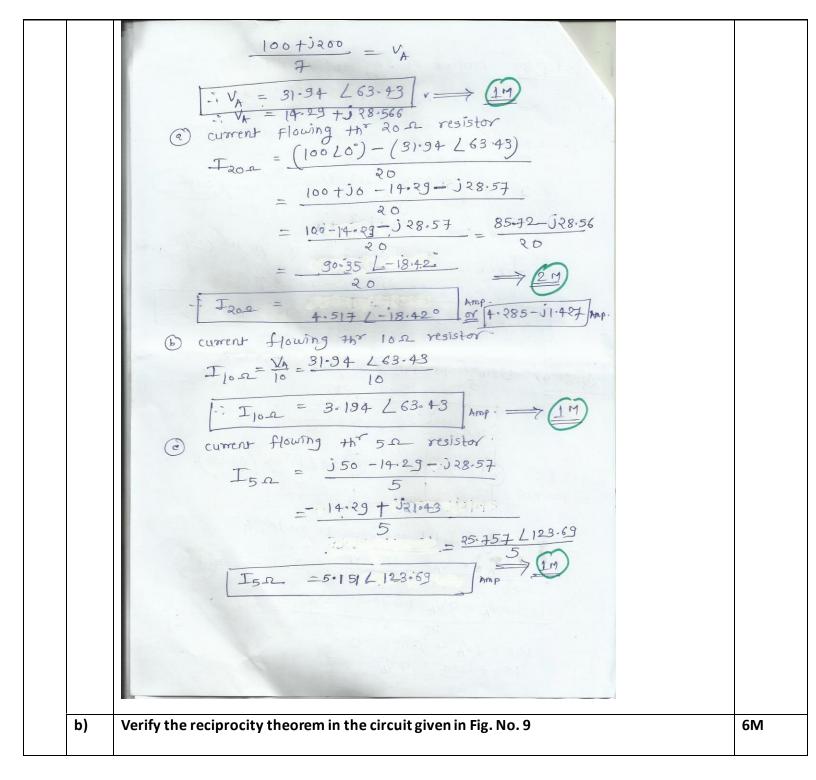
SUMMER-19 EXAMINATION

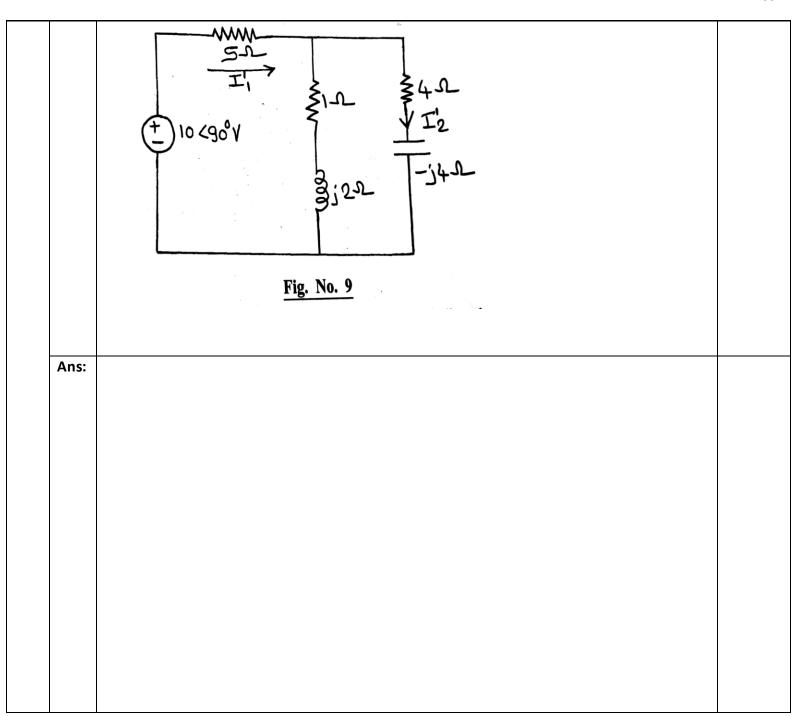
Subject Name: Electric circuits and network


Model Answer

Subject C 22330

Q. No.	Sub Q. N.	Answers	Marking Scheme
6.		Attempt any TWO of the following :	12- Total Marks
	a)	Use nodal analysis to calculate the current flowing in each branch of the network shown in Fig. No. 8 $\begin{array}{c} \hline Fig. No. 8 \\ \hline \end{array}$	6M


Subject C 22330


MAHARASHT (Autonomous) (IS O/IEC - 2700) BOARD OF TECHNICAL EDUCATION rtified)

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subject

Subject C 22330

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subject C 22330

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subj

Subject C 22330

$$S_{5} = \frac{5}{10} + \frac{5}{10} + \frac{1}{10} + \frac$$

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subject C 2

Subject C 22330

MAHARASHT Autonomous)

(Autonomous) (IS O/IEC - 2700 rtified)

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u>

Subject C 22330

$$I_{a}'' = \frac{16 \lfloor 96''}{5 \cdot 986 \lfloor -23 + 61 \rfloor}$$

$$I_{a}'' = \frac{16 \lfloor 96''}{5 \cdot 986 \lfloor -23 + 61 \rfloor}$$

$$I_{a}'' = \frac{1 \cdot 637 \rfloor (17 \cdot 64 + 4mp)}{6 \cdot 12}$$

$$I_{1}'' = 1 \cdot 637 \rfloor (17 \cdot 64 + 4mp) \longrightarrow (17)$$

$$I_{1}'' = 0 \cdot 596 \lfloor 162 \cdot 64 + 4mp \rfloor \longrightarrow (17)$$

$$I_{1}'' = 0 \cdot 596 \lfloor 162 \cdot 64 + 4mp \rfloor \longrightarrow (17)$$

$$I_{1}'' = 0 \cdot 596 \lfloor 162 \cdot 64 + 4mp \rfloor \longrightarrow (17)$$

$$I_{1}'' = 0 \cdot 596 \lfloor 162 \cdot 64 + 4mp \rfloor \longrightarrow (17)$$

$$I_{1}'' = 0 \cdot 596 \lfloor 162 \cdot 64 + 4mp \rfloor \longrightarrow (17)$$

$$I_{1}'' = 0 \cdot 596 \lfloor 162 \cdot 64 + 4mp \rfloor \longrightarrow (17)$$

$$I_{1}'' = 0 \cdot 596 \lfloor 162 \cdot 64 + 4mp \rfloor \longrightarrow (17)$$

$$I_{1}'' = 0 \cdot 596 \lfloor 162 \cdot 64 + 4mp \rfloor \longrightarrow (17)$$

$$I_{2}'' = 10 \cdot 296''$$

$$I_{2}'' = 0 \cdot 596 \lfloor 162 \cdot 64 + 4mp \rfloor \longrightarrow (17)$$

$$I_{2}'' = 10 \cdot 296''$$

$$I_{1}'' = 0 \cdot 596 \lfloor 162 \cdot 64 + 4mp \rfloor \longrightarrow (17)$$

$$I_{2}'' = 16 \cdot 57 \cdot 126 \cdot 64 + 4mp + 12$$

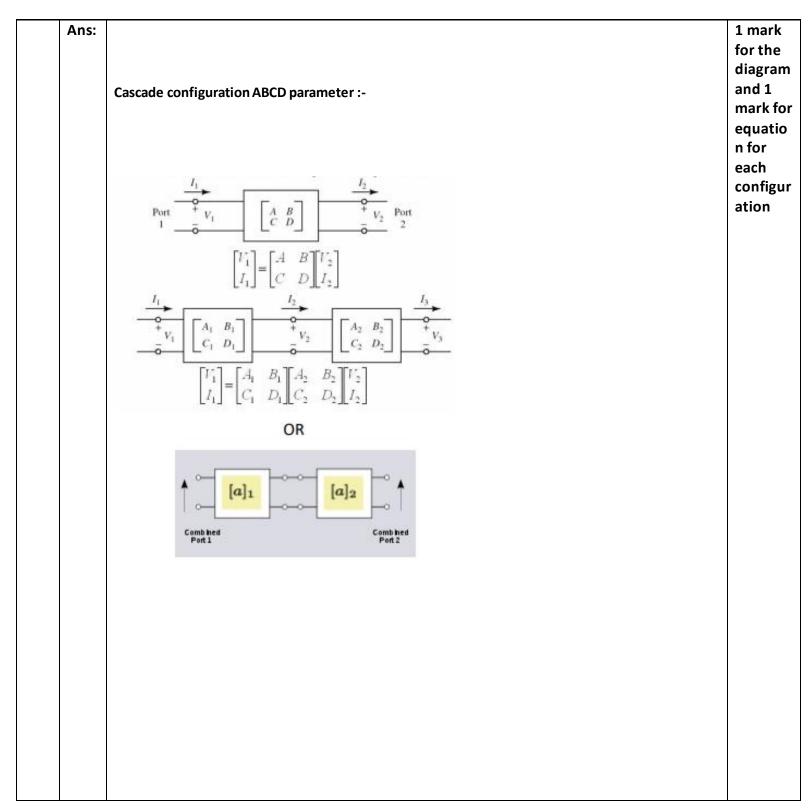
Subject Name: Electric circuits and network

Model Answer

Subject C 22330

c)	Draw the two port network and determine the indicated parameters for the following configurations:	6M
	 (i) Cascade configurations (ABCD parameter) (ii) Series configurations (iii) Parallel configurations. 	

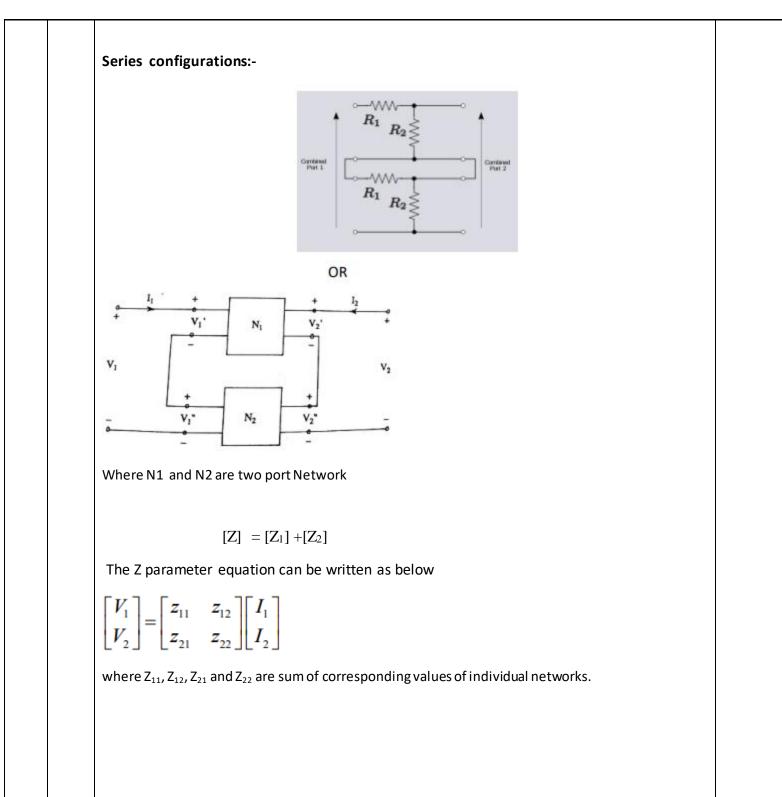
BOARD OF TECHNICAL EDUCATION MAHARAS HT 10480 0 (Autonomous) (IS O/IEC - 2700)


rtified)

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

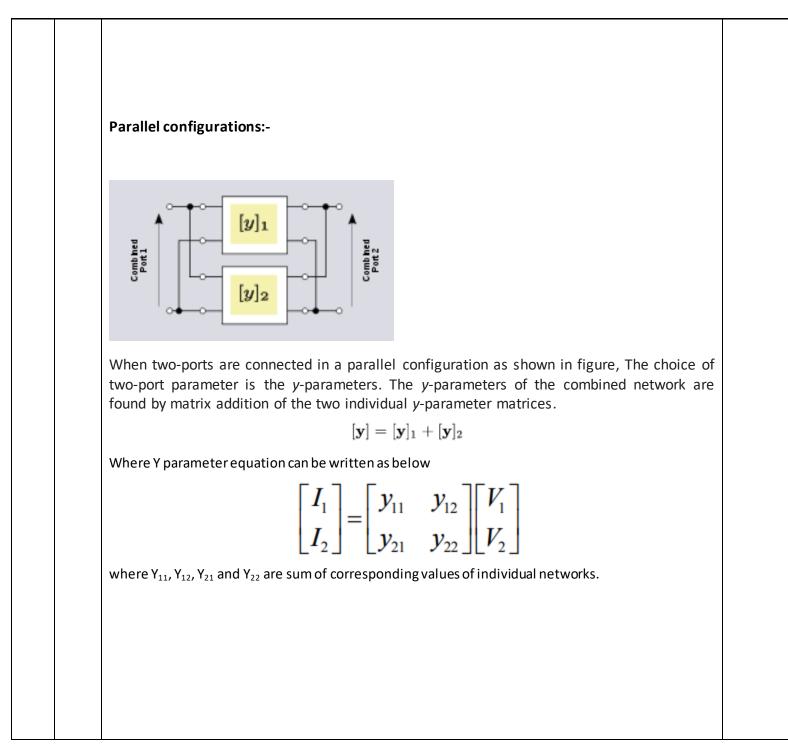
Subject C 22330


MAHARASHTI (Autonomous) (ISO/IEC - 2700)

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

Subject C 22330


MAHARASHT (Autonomous) (IS O/IEC - 2700

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

