

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
- **► V2V EdTech LLP**
- w2vedtech.com
- o v2vedtech

Subject Name: Electric circuits and network Model Answer Subject Code:

22330

1

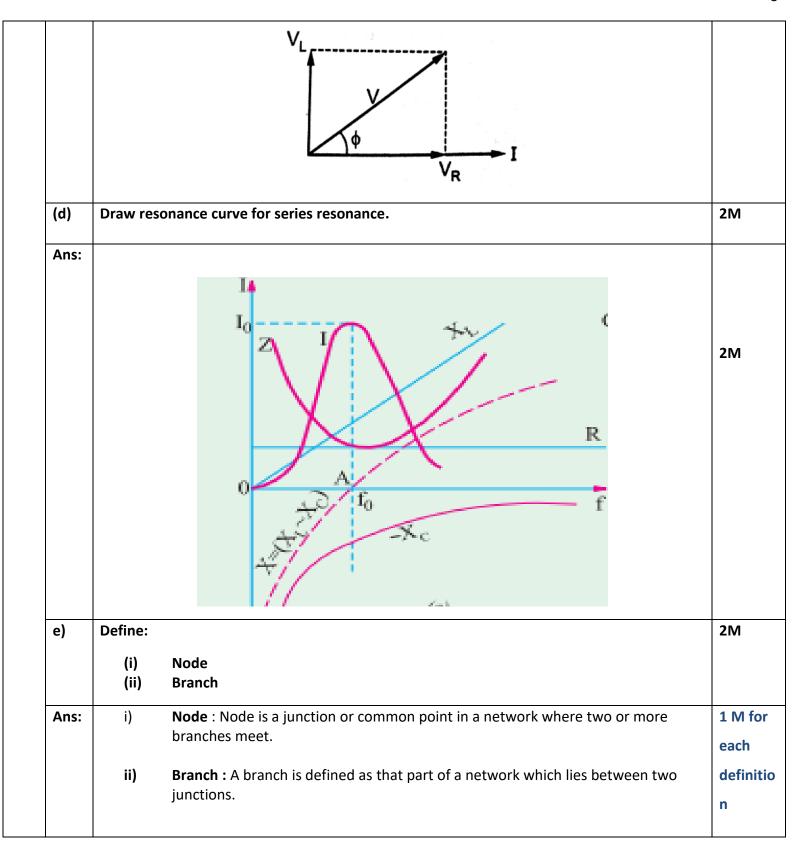
Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.		Answers	Marking Scheme
1	(A)	(A) Attempt any FIVE of the following:	any FIVE of the following:	10- Total Marks
	(a)	Define: (i) (ii)	Admittance Conductance	2M
	Ans:	It is given ii) Conducta	Admittance-: ace is defined as the reciprocal of impedance .It is denoted by Y. by Y = (1/Z) Conductance: ance is the ratio of resistance to the square of impedance .It is denoted by G. by G = (R/Z²)	1 M for each definitio n

Subject Name: Electric circuits and network

Model Answer Subject Code:


22330

(b)	Write the equation of open circuit Z parameter.	2M
Ans:	Solf -> The equations for open circuit Z-parameters are	
	$Z_{11} = \frac{V_1}{Z_1} - (OhmA)$	
	$Z_{21} = \frac{V_2}{I_1} _{T_2 = 0}$ (ohms)	½M for each
		equati
	Z12 = V1 - (0 hm3)	n
	$Z_{22} = \frac{V_2}{I_2} \Big _{I_1 = 0}$ (ohms)	
(c)	Draw phasor diagram for R-L series circuit.	2M
Ans:	Phasor diagram for R-L series circuit.	
	Phasor diagram:	2M
	$\nabla \Phi$ V	
	I I	
	(OR)	

WINTER-18 EXAMINATION **Subject Name: Electric circuits and network**

Model Answer Subject Code:

22330

Subject Name: Electric circuits and network <u>Model Answer Subject Code</u>:

22330

f)	State Thevenins theorem.	2M
Ans:	Any network containing active and/or passive elements and one or more dependent and/or independent voltage/or current sources can be replaced by an equivalent network containing a voltage source (Thevenin's equivalent voltage V_{TH} or V_{OC}) and a series resistance (called Thevenin's equivalent resistance R_{TH}), where V_{OC} or V_{Th} is the voltage measured across specified open terminals and R_{Th} is the resistance measured across the same terminals when all the sources present in the network are replaced by their internal resistances.	2M
g)	Write the formula for Delta to Star conversion giving examples.	2M
Ans:	The formula for Delta to Star conversion-	2M
	V_{2} V_{3} V_{3} R_{a} V_{2} V_{3} V_{3} $R_{1} = \frac{R_{b}R_{c}}{R_{a}+R_{b}+R_{c}}$ $R_{2} = \frac{R_{a}R_{c}}{R_{a}+R_{b}+R_{c}}$	

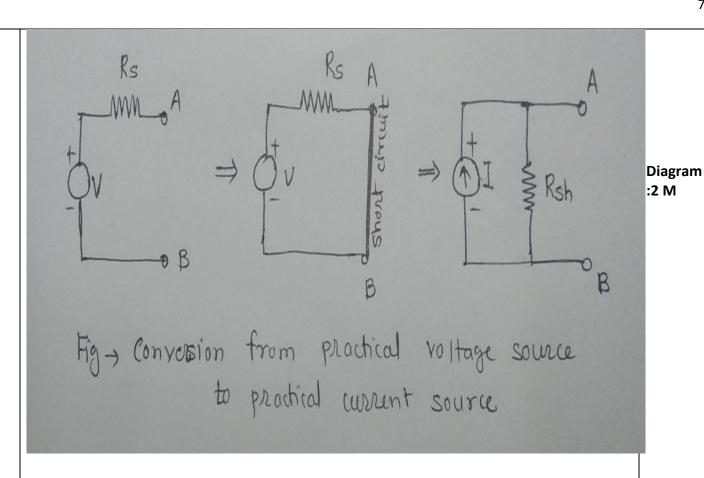
Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
2		Attempt any THREE of the following:	12- Total Marks

Subject Name: Electric circuits and network <u>Model Answer Subject Code</u>:

22330

a)	For RLC series circuit draw voltage triangle, power triangle and impedance triangle along with proper labellings and equations for condition $V_L > V_C$.	4M
Ans:		Voltage
		triangl
	Soln -> For R-L-c series circuit (For cond' VL7 Vc)	1 M
	i) Voltage Triangle is given by	Imped
		nce
	V PE	triangl
		1M
	ii) Impedence Triangle for VL) Vc is given by	Power
	121	triangl
	So R	-1 M
	(ii) Power Triangle for VL/VC 15 given of	Voltag
	git's a = VISING OR ARROWN ES 3	equati
	121 Power Triangle for VL) VC is given by Signature of the state of t	n-1/2N
	iv) The vtg. and current equations for VL>VC (x(t) = Vm simut	Currer
	k(t) = Vmsimut	equati
	$i(t) = Imsin(wt - \phi)$	n-1/2
b)	Define and state equations for (i) Active Power (ii) Reactive Power	4M
	(iii) Apparent Power.	
Ans:	i)Active Power (P):	Active
	The active newer is defined as the average newer D. taken by as consumed by the siven	power
	The active power is defined as the average power P _{avg} taken by or consumed by the given	1.5 M

Subject Name: Electric circuits and network <u>Model Answer Subject Code</u>:


22330

b

	(OR)	
	(O.I.)	Rea
	It is the power which is actually dissipated in the circuit resistance.	pow
	$P = V.I.CosØ = I^2R$	1.5 (
	Unit: - Watt OR Kilowatt	
	ii)Reactive Power (Q):-	
	It is the power developed in the reactive elements present in the circuit.	
	(OR)	App t po
	The reactive power is defined as the product of V, I and sine of angle between V and I.	1 M
	Q= V.I. sinØ	
	Units: - VAR OR KVAR	
	iii)Apparent Power (S):-	
	It is the product of rms values of applied voltage and current.	
	Unit: volt-ampere (VA) OR kilo-volt-ampere (kVA)	
	OR Mega-volt-ampere (MVA)	
	S=VI=I ² Z VA	
c)	Explain the steps for converting practical voltage source into practical current source.	4M
Ans:		

WINTER-18 EXAMINATION **Subject Name: Electric circuits and network Model Answer Subject Code:**

22330

A given voltage source with a series resistance can be converted into an equivalent current source with a parallel resistance.

The steps for converting practical voltage source into practical current source are:

i) Terminals A and B of the given voltage source is short circuited as shown. Current supplied by the source is given by

Current I=V/R.

- ii)The value of resistance which is connected in parallel with the equivalent current source will have the same value as that of series resistance. That is Rs=Rsh.
- ii)The equivalent current source is connected in parallel with the shunt(parallel) resistance.

Steps

2 M

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

)	Three resistances 32 Ω , 40 Ω , 48 Ω are connected in star circuit. Determine its equivalent delta circuit.	4M
ns:		
	$R = R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}$ $= (32 \times 40) + (40 \times 48) + (48 \times 32)$ $= (32 \times 40) + (40 \times 48) + (48 \times 48)$ $= (32 \times 40) + (40 \times 48) + (40 \times 48) + (40 \times 48)$ $= (32 \times 40) + (40 \times 48) + (40 \times 48) + (40 \times 48)$ $= (32 \times 40) + (40 \times 48) + (40 \times 48) + (40 \times 48)$ $= (32 \times 40) + (40 \times 48) + (40 \times 48) + (40 \times 48)$ $= (32 \times 40) + (40 \times 48) + (40 \times 48) + (40 \times 48) + (40 \times 48)$ $= (32 \times 40) + (40 \times 48) + (40 \times 48) + (40 \times 48) + (40 \times 48)$ $= (32 \times 40) + (40 \times 48) + (40 \times 48) + (40 \times 48) + (40 \times 48)$ $= (32 \times 40) + (40 \times 48) + ($	
	$R_{31} = \frac{R}{R_2} = \frac{4736}{40} = 118.4 2$	

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
3		Attempt any THREE of the following :	12- Total Marks

Subject Name: Electric circuits and network <u>Model Answer Subject Code</u>:

22330

(

a)	If $Z_1 = 3 + j7$ and $Z_2 = 12 - j16$ are connected in parallel. Find the equivalent impedance of combination.	4M
Ans:	Z_1Z_2 (3+ <i>i</i> 7)(12- <i>i</i> 16) (7.62<66.8)(20<-53.13)	Formula 1M
	Equivalent impedance, $Z_{eq} = \frac{Z_1 Z_2}{Z_1 + Z_2} = \frac{(3+j7)(12-j16)}{(3+j7) + (12-j16)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8) + (20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8)(20 < -53.13)} = (7.62 < 66.8)(20 < -53.13$	Steps 1M
	$= \frac{152.4 < 13.67}{17.5 < -40} = 8.71 < 53.67 = 5.16 + j7 \Omega$	Ans. 2N
b)	Determine Bandwidth and Quality factor (Q) for the series circuit.	4M
Ans:		2 M
	Band width:	each
	The bandwidth of aseries circuit is given by the band of frequencies which lies between two	
	points on either side of f_0 where current falls to $I_0/\sqrt{2}$. (graph may be desirable)	
	From the given fig., band width AB is,	
	$AB = \Delta f = f_2 - f_1$ or $AB = \Delta \omega = \omega_2 - \omega_1$ where f_1 and f_2 are the corner or edge frequencies.	

(OR)

$$\Delta f = f_r/Q_r = \frac{\frac{1}{2\pi\sqrt{LC}}}{\frac{1\sqrt{L}}{R\sqrt{C}}} = \frac{R}{2\pi L}$$

Quality factor:

Note: any one of the following can be considered

Reciprocal of power factor is called quality (*Q*) factor or its figure of merit. The *Q*-factor of aseries circuit can be defined as the ratio of impedance to resistance.

$$Q = \frac{Z}{R}$$

It is also defined as,

$$Q = 2\pi \frac{\text{maximum energy stored per cycle}}{\text{Energy dissipated per cycle}}$$

For a resonant circuit it may be determined in any of the following ways

i) It is given by the voltage magnification produced in the circuit at resonance.

Voltage magnification
$$=\frac{V_{L_0}}{V} = \frac{I_0 X_{L_0}}{I_0 R} = \frac{\text{reactive power}}{\text{active power}} = \frac{X_{L_0}}{R} = \frac{\omega_0 L}{R} = \frac{\text{reactance}}{\text{resistance}}$$
or $=\frac{V_{C0}}{V} = \frac{I_0 X_{C0}}{I_0 R} = \frac{\text{reactive power}}{\text{active power}} = \frac{X_{C0}}{R} = \frac{\text{reactance}}{\text{resistance}} = \frac{1}{\omega_0 CR}$
 $\therefore Q - \text{factor}, \qquad Q_0 = \frac{\omega_0 L}{R} = \frac{2\pi f_0 L}{R} = \tan \phi$

ii)

$$Q\text{-factor} = 2\pi \frac{\text{maximum stored energy}}{\text{energy dissipated per cycle}} \qquad \dots \text{in the circuit}$$

$$= 2\pi \frac{\frac{1}{2}LI_0^2}{I^2 R T_0} = 2\pi \frac{\frac{1}{2}L(\sqrt{2}I)^2}{I^2 R (1/f_0)} = \frac{I^2 2\pi f_0 L}{I^2 R} = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR} \qquad \dots (T_0 = 1/f_0)$$

iii)

resonant frequency,
$$f_0 = \frac{1}{2\pi \sqrt{(LC)}}$$
 or $2\pi f_0 = \frac{1}{\sqrt{(LC)}}$

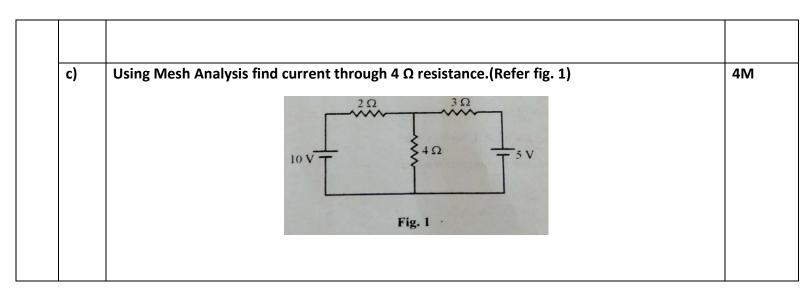
Substituting the above in equation, $Q_0=\frac{2\pi f_0 L}{R}$, $\,$ we get,

$$Q_0 = \frac{1}{R} \sqrt{\frac{L}{C}}$$

iv) Q-factor of a resonant series circuit may be written as,

$$Q_0 = \frac{\omega_0}{\text{bandwidth}} = \frac{\omega_0}{\Delta \omega} = \frac{\omega_0}{R/L} = \frac{\omega_0 L}{R} = \frac{L}{R\sqrt{LC}} = \frac{1}{R}\sqrt{\frac{L}{C}}$$

v) It may also be deduced as,


$$Q_0 = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 C R} = \frac{1}{R} \sqrt{\frac{L}{C}} = \sqrt{\frac{X_{L0} X_{C0}}{R}} = \frac{f_0}{B_{hp}} = \frac{\omega_0}{\omega_2 - \omega_1} = \frac{f_0}{f_2 - f_1}$$

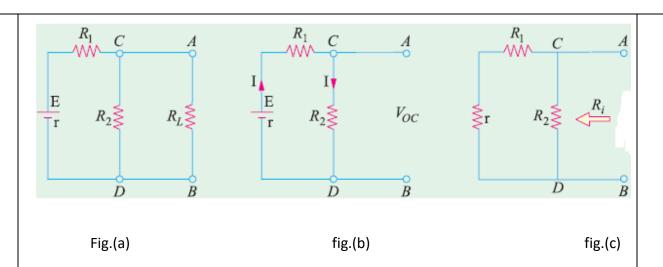
Where B_{hp}= bandwidth of the circuit

Subject Name: Electric circuits and network <u>Model Answer Subject Code</u>:

22330

Subject Name: Electric circuits and network

Model Answer Subject Code:


22330

	-	
Ans:	A 2.1 B 3.2	Correct
		calculati
	10VT) }4-2) + 5V	on-
	1, 4 12	4M(Give
	F €	step
	O And kill to loca AREEA	marking
	1 Apply KUL to loop ABEFA,)
	$-2I_{1}-4(I_{1}-I_{2})+10=0$	
	$-2I_{1}-4I_{1}+4I_{2}=-10$	
	- 6I, + 4Î2 = -10 - O	
	2 Apply KUL to loop BCDEB,	
	$-3I_2 - 5 - 4(I_2 - I_1) = 0$	
	$-3I_{2}-5-4I_{2}+4I_{1}=0$	
	-312-5-42177	
	42,-72=5-@	
	Solving equs. (1) & (2) eve get, $\widehat{I}_1 = 1.92A , \widehat{I}_2 = 0.38A$ $\widehat{I}_1 - \widehat{I}_2 = 1.92 - 0.38$	
	1 2 4 To = 0-38 A	
	$T_1 = 1.72R$, $T_2 = 1.92 - 0.38$	
	" Current through 402, I,-I2 = 1.92-0.38 = 1.54 A (downwoods)	
d)	Explain the procedure for solving Thevenins theorem using suitable example.	4M
Ans:	Steps to find Thevenin's equivalent circuit, taking an example is as follows:	1M each

Subject Name: Electric circuits and network <u>Model Answer Subject Code</u>:

22330

14

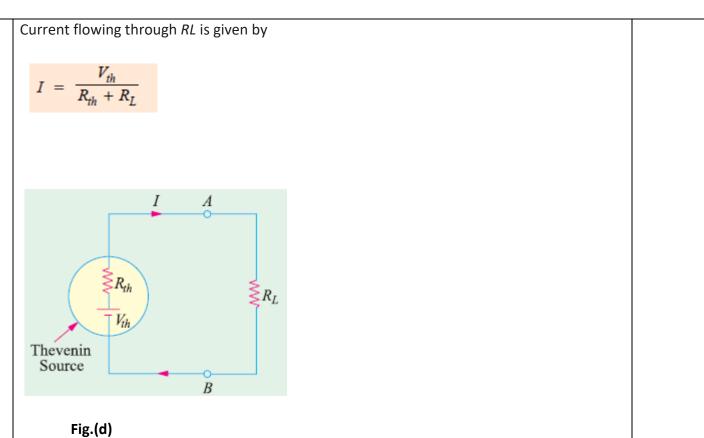
- 1. From the given circuit(fig.a), Remove R_L from the terminals A and B and redraw the circuit as shown in Fig.b.
- 2. Calculate the open-circuit voltage Voc which appears across terminals A and B.

As seen, $Voc = \text{drop across } R_2 = IR_2 \text{ where } I \text{ is the circuit currentwhen } A \text{ and } B \text{ are open.}$

$$I = \frac{E}{R_1 + R_2 + r}$$
 \therefore $V_{oc} = IR_2 = \frac{ER_2}{R_1 + R_2 + r}$ [r is the internal resistance of battery]

It is also called 'Thevenin voltage' V_{th} .

3.Now, imagine the battery to be removed from the circuit, leaving its internal resistance *r* behind and redraw the circuit, as shown in Fig.(*c*). When viewed *inwards* from terminals *A* and *B*, the equivalent resistance is given as,


$$R = R_2 || (R_1 + r) = \frac{R_2(R_1 + r)}{R_2 + (R_1 + r)}$$

This is called Thevenin's equivalent resistance R_{th.}

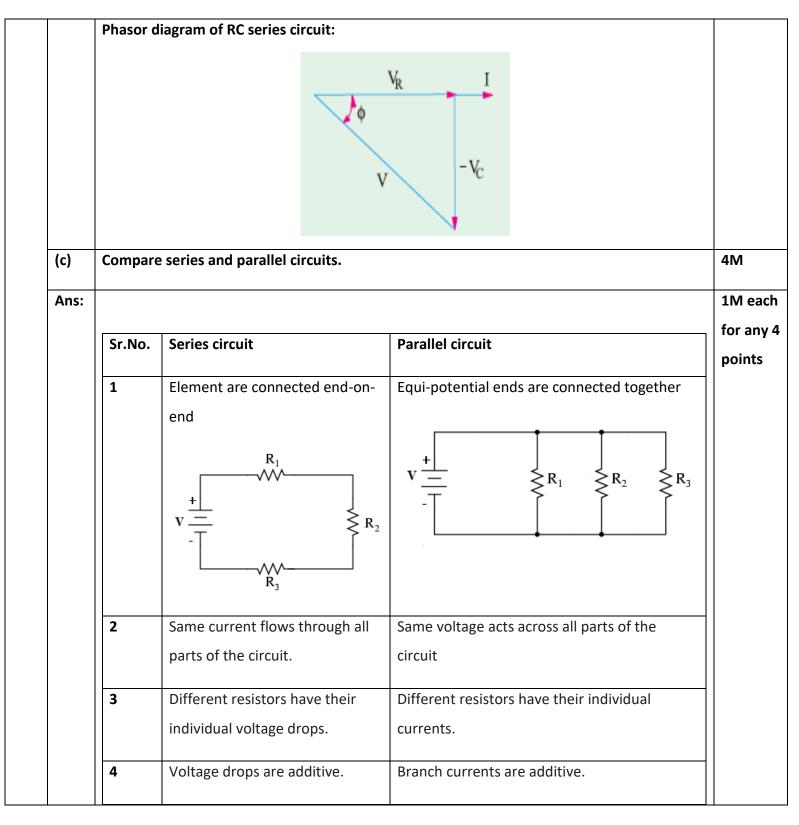
4. Connect R_L back across terminals A and B(fig.d)from where it was temporarily removed earlier.

Subject Name: Electric circuits and network <u>Model Answer Subject Code</u>:

22330

Q. No.	Sub Q. N.	Answers	Marking Scheme
4		Attempt any THREE of the following :	12- Total Marks
	(a)	A coil has resistance of 4 Ω and an inductance of 9.55 mH. Calculate (i) Reactance (ii) The impedance (iii) The current taken from 240 V, 50 Hz supply.	4M

Subject Name: Electric circuits and network


Model Answer Subject Code:


22330

Ans:		1M ead
Alis:	402 L= 9.55 MH	
		for
		param
	240V, 50Hz	ers &
		1M fo
	Data given: R=402, L= 9.55 mA, V=240V, f=50HZ	prope
	R=40, L= 7:35 M(A) V=27001 0	steps
	i) Reactede, XL = 271fL = 2x3.14x50x9.55x10 = 3x2	follow
	i) Reaction ce, $XL = 277fL = 2x3.14 \times 50x 9.55 \times 10^3 = 3x2$ ii) Impedance, $Z = R+jXL = 4+j3 = 5 136.87x2$	
	10) Impedition 2 2 2 3 4 0 3 4 0 10 10 10 10 10 10 10 10 10 10 10 10 1	
	iii) Consent, $I = \frac{V}{Z} = \frac{240}{5} = \frac{484}{5}$	
	(01)	
	(i) Impedance, $Z = \sqrt{R^2 + \chi L^2} = \sqrt{4^2 + 3^2} = 5.52$	
	$\frac{1}{\sqrt{2}} = \sqrt{1 + 2} = \sqrt{1 + 3} = \frac{3}{2}$	
(b)	Draw the phasor diagrams for a series RL and series RC with AC supply.	4M
Ans:	Phasor diagram of RL series circuit:	2M fo
		each
	B	diagra
		diagra
	$V_{ m L}$	
	ϕ I	
	O	
	V_R A	

WINTER- 18 EXAMINATION Subject Name: Electric circuits and network Model Answer Subject Code:

22330

Subject Name: Electric circuits and network Model Answer Subject Code: 22330

		of different voltage drops.		
	6	Resistances are additive.	Conductances are additive.	
	7	Powers are additive.	Powers are additive	
(d)	fig. 2)	2Ω 10V-T	d the resultant current (I) through circuit. (Refer	4M

Subject Name: Electric circuits and network

Model Answer Subject Code:

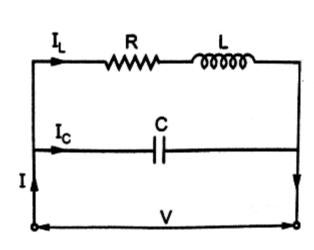
22330

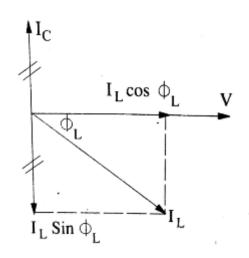
Ans:	- 0' 1 hocome 0	Correct
	Adding both the Someces the Circuit becomes,	calculati
	4.02 T	on-4M
	- m + o	
	20V 	
	· ·	
	Its equivalent Current Source is	
	Į	
	$5A^{\uparrow}$ A^{2} $T=5A$	
	•	
(e)	Using super-position theorem find current through 4 Ω resistance.(Refer fig. 3)	4M
	$\frac{3\Omega}{\sqrt{2}}$	
	Text Services	
	$6V + 4\Omega $ $+ 12V$	
	2Ω	
	Fig. 3	

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330


Ans:	$\frac{3 \text{top } T \text{ (With 6V Source alone)}}{I' \frac{3.2}{M}} = \frac{5 \text{top } T_2^1}{4 \text{top }} = \frac{6}{3 + 2.55} = 1.08 \text{ A}$	Corrct calculati on -4M
	$I_1' = I \times (5+2) = \frac{1.08 \times 7}{11} = \frac{0.694}{11}$	
	$ \frac{gtap II (Wilt 12V \ alone)}{VI'' VI'' I } = \frac{V}{Req} = \frac{12}{5 + (3 4) + 2} = \frac{12}{8 \cdot 71} = \frac{1 \cdot 38A}{1 \cdot 38A} $	
	$I_1'' = \frac{\hat{I}_2'' \times 3}{3+4} = \frac{1.38 \times 3}{7} = 0.59 \text{ A}$ Consert through $402 = \hat{I}_1' + \hat{I}_1'' = 0.69 + 0.59 = 1.28 \text{ A}$	


Q. No.	Sub Q. N.	Answers	Marking Scheme
5.		Attempt any TWO of the following:	12- Total Marks
	a)	Derive the expression for resonance frequency for parallel circuit.	6M
	Ans:	A parallel circuit containing an inductance and a capacitance is said to be in resonance when the current through the parallel combination is in phase with the supply voltage.	Diagram 2M,
		Consider a parallel combination of L and C as shown below.	derivati on 4M

Subject Name: Electric circuits and network <u>Model Answer Subject Code</u>:

22330

21

The vector diagram for this circuit is as shown.

The net reactive component of current = $Ic - I_LSin\phi_L$.

At resonance ,its value is zero.

That is $I_c - I_L Sin \phi_L = 0$ or $I_c = I_L Sin \phi_L$

22

From the diagram above, $I_L = V/$	/Z,
------------------------------------	-----

$$Sin\phi_L = X_L/Z$$
, $I_c = V/X_c$

Substituting these values in the above equation, the condition for resonance becomes

$$V/X_c = (V/Z)(X_L/Z)$$
 or $(X_L)(X_c) = Z^2$

Substituting $X_L = \omega L$ and $X_c = 1/\omega C$

$$(\omega L/\omega C) = Z^2$$

$$L/C = R^2 + (2\pi f L)^2$$

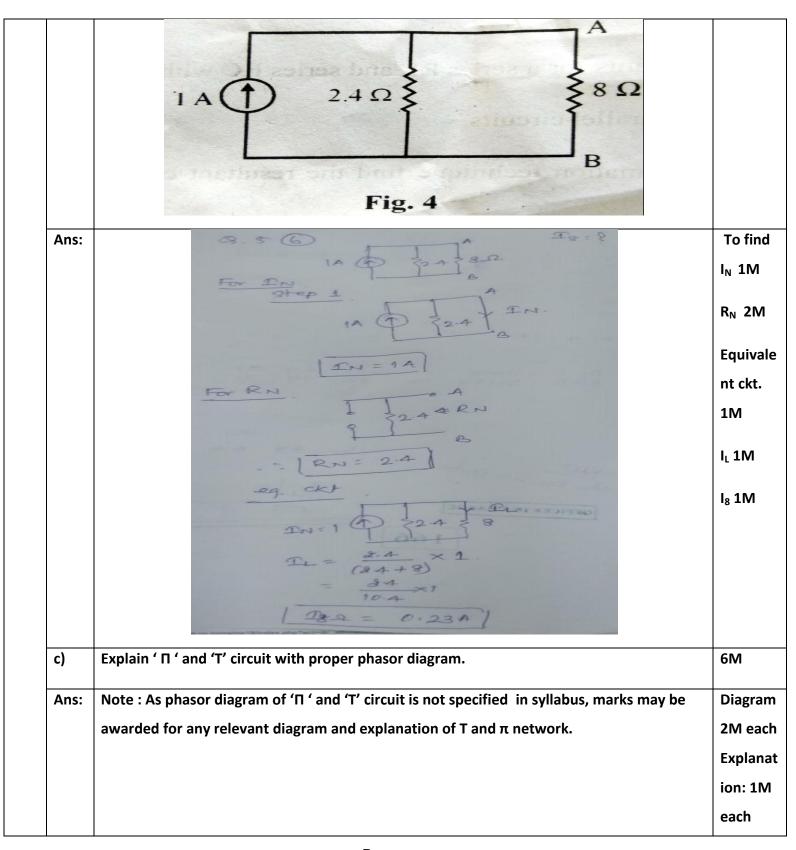
$$(2\pi fL)^2 = \frac{L}{C} - \frac{R^2}{L^2}$$

$$2\pi f = \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$$

If $f=f_r = resonant$ frequency, then,

$$f_r = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$$

If R is negligible, then


$$fr = \frac{1}{2\pi\sqrt{LC}}$$

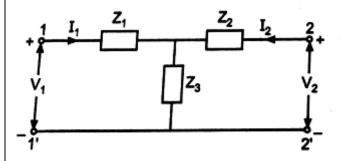
b) Calculate current through 8 Ω resistance using Norton's theorem.(Refer fig. 4)

6M

Subject Name: Electric circuits and network <u>Model Answer Subject Code</u>:

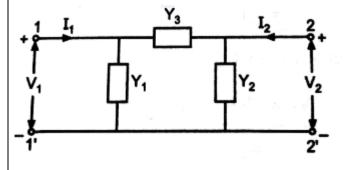
22330

Subject Name: Electric circuits and network <u>Model Answer Subject Code</u>:


22330

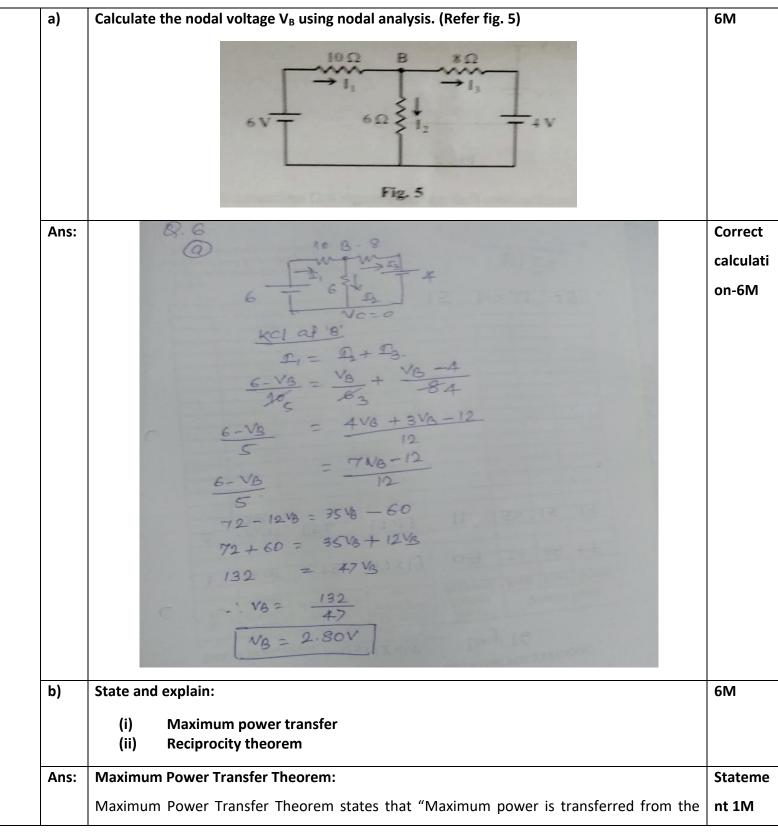
24

T networks are used to represent the equivalent of transmission line theory, filters, etc.


Ladder network in transmission lines is constructed using T network in series. If Z parameters and ABCD parameters of a network are known, then T network can be constructed.

T network

π network


This is also an important network frequently used in transmission line theory. If Y parameters of a network are known, then π network can be constructed.

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
6.		Attempt any TWO of the following :	12- Total Marks

Subject Name: Electric circuits and network <u>Model Answer Subject Code</u>:

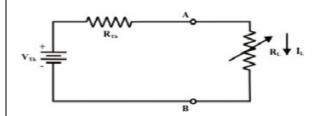
22330

Subject Name: Electric circuits and network <u>Model Answer Subject Code</u>:

22330

26

source to the load when the load resistance is equal to the Thevenin's equivalent resistance of the given circuit as seen from load terminals"


Explanat

ion

each

2M each

.i. e,
$$R_1 = R_{TH}$$

In above figure a variable load resistance R_L is connected to an equivalent Thevenin circuit of original circuit. The current for any value of load resistance is,

$$I_L = \frac{V_{TH}}{R_{TH} + R_L}$$

Then, the power delivered to the load is..

$$P_L = I_L^2 \times R_L$$
. $P_L = \left(\frac{V_{TH}}{R_{TH} + R_L}\right)_L^2 \times R_L$

Maximum power transfer occurs when the load resistance $R_L = R_{TH}$.

Substituting R_L= R_{TH}in the above equation, we get

$$P_L = [V_{Th}/(R_L + R_L)^2] R_L$$

$$= (V_{Th}/2R_L^2) \times R_L$$

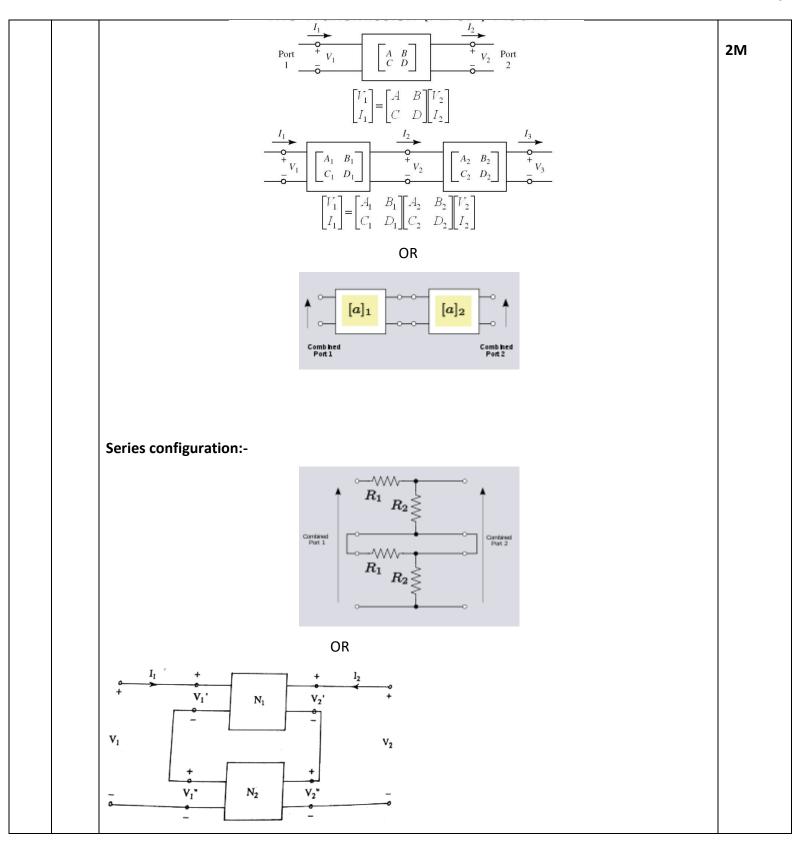
$$\mathsf{P}_{\mathsf{Lmax}} = \frac{V^2}{4R_L}$$

Reciprocity Theorem :

Statement:

In any linear bilateral network, if a source of emf E in any branch produces a current I in any other branch , then the same emf E acting in the second branch would produce the same current I in the first branch.

(OR)


WINTER- 18 EXAMINATION Subject Name: Electric circuits and network Model Answer Subject Code:

22330

	In any branch of a network or circuit, the current due to a single source of voltage (V) in the	
	network is equal to the current through that branch in which the source was originally	
	placed when the source is again put in the branch in which the current was originally	
	obtained.	
	Explanation:	
	Consider the two circuits shown below.	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
ı	The various resistances R ₁ , R ₂ , R ₃ are connected in the circuit diagram above with a voltage	
	source (V) in first loop and an ammeter in second loop in first circuit.	
	In the second circuit the positions of voltage source and ammeter are interchanged	
	According to Reciprocity Theorem, the ratio of V / I called transfer resistance. It remains same	
	in both cases. In this way the theorem is useful for solving networks.	
c)	Explain significance of two-port network. Also draw two port network for	6M
	(i) Cascade configuration ABCD parameter (ii) Series configuration	
Ans:	Significance of two-port network:-	2M
	A two-port network is regarded as a "black box" with its properties specified by a matrix of	
	numbers. This allows the response of the network to signals applied to the ports to be	2M
	calculated easily, without solving for all the internal voltages and currents in the network.	
	Cascade configuration ABCD parameter :-	
I		

Subject Name: Electric circuits and network <u>Model Answer Subject Code</u>:

22330

Subject Name: Electric circuits and network	Model Answer Subject Code:

22330	
-------	--

Where N ₁ and N ₂ are two 2-port networks	