

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
- **► V2V EdTech LLP**
- w2vedtech.com
- o v2vedtech

WINTER – 19EXAMINATION

Model Answer

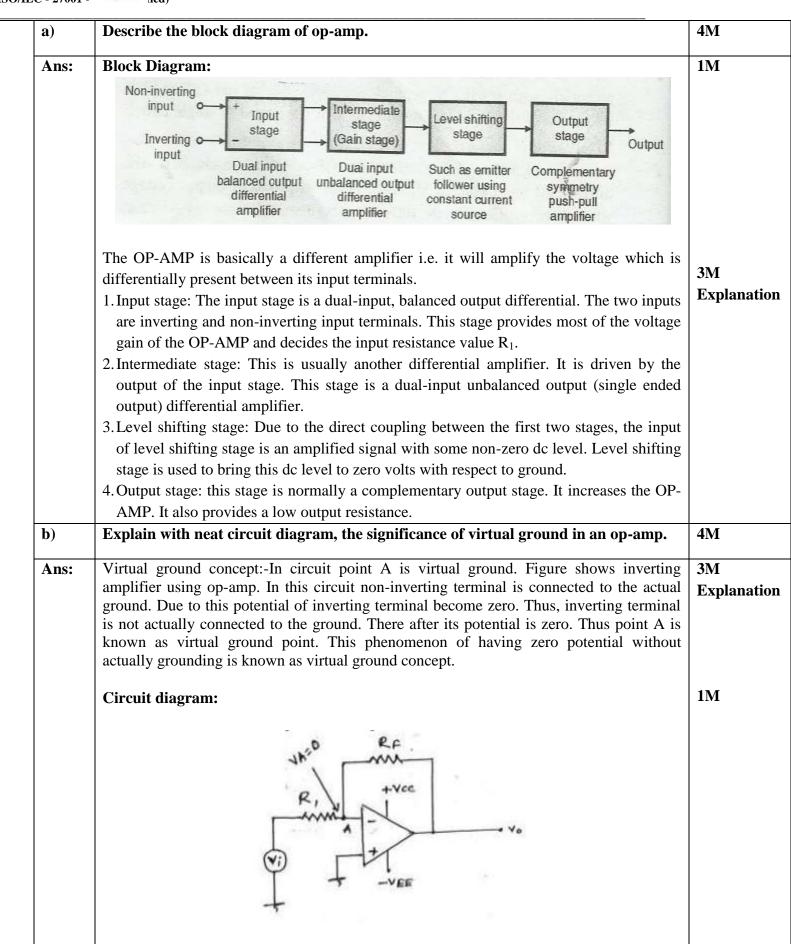
Subject Code:

22423

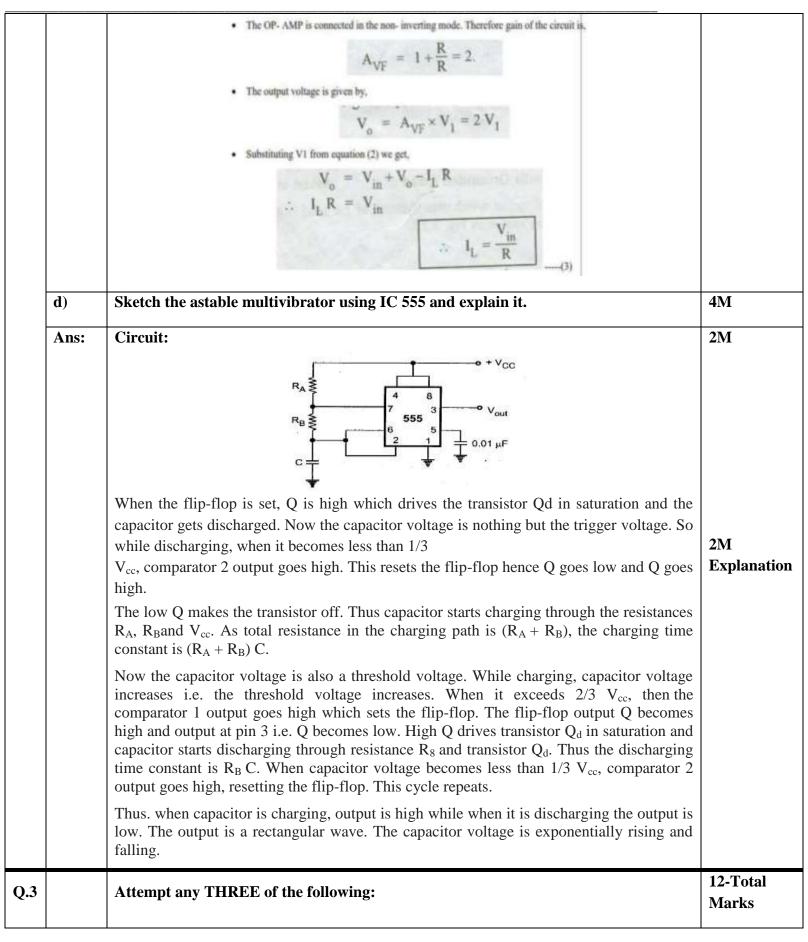
Important Instructions to examiners:

Subject Name: Linear Integrated Circuit

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.


Q. No.	Sub Q. N.	Answer	Marking Scheme
Q.1		Attempt any FIVE of the following:	10-Total Marks
		Define the operational amplifier parameters.	2M
	a)	i)Slew rate	
		ii) Input bias current	
	Ans:	i) Slew Rate: it is defined as the maximum rate of change of o/p voltage per unit time & its	1M
		$0.5 \text{ per volt/use } [S.R=\infty].$	Each
		ii) Input Bias Current: Input Bias Current is the average of the currents entering into the	
		positive & negative terminals of an op-Amp & its value is 200 nA	
	b)	Draw Wien bridge oscillator circuit using IC 741.	2M
	Ans:	$ \begin{array}{c c} \hline & R_1(R_4) & B & R_F(R_3) \\ \hline & OP-AMP & V_0 \end{array} $ $ f = \frac{1}{2\pi RC} $	2M
	c)	List four specifications of IC LM324.	2M

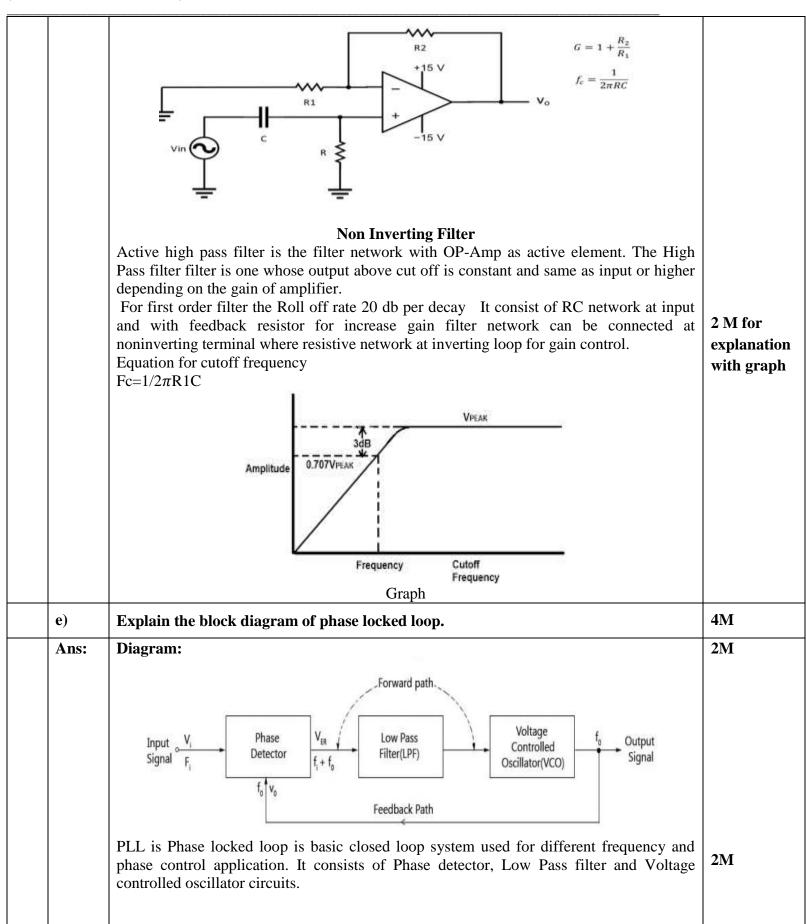
MAHARASHTRA (Autonomous) (ISO/IEC - 27001 -


)ARD OF TECHNICAL EDUCATION

Ans:	1. Integrated with four Op-Amps in a single package	½ M
	2. Wide power supply Range	Each
	i) Singe supply – 3V to 32V	
	ii) Dual supply $-\pm 1.5$ V to ± 16 V	
	3. Low Supply current – 700uA	
	4. Single supply for four op-amp operation enables reliable operation	
	5. Operating ambient temperature – 0°C to 70°C	
	6. Soldering pin temperature – 260 °C (for 10 seconds – prescribed)	
d)	State the four applications of an instrumentation amplifier.	2M
Ans:	The instrumentation amplifier can be used for other application such as	½ M
	1. Electronic weighing machine scale	Each
	2 .Light, intensity meter	Zucii
	3. Pressure monitoring & controlling	
	4. Temperature monitoring and controlling.	
	5. Process Instrumentation in measurement of physical quantities.	
e)	State the four advantages of active filter over passive filter.	2M
Ans:	Advantages of active filter over passive filter:	½ M
Alis.	1. Gain and frequency adjustment flexibility since the op-amp is able to providing	
	gain; the input signal is not attenuated as in case of passive filters.	Each
	2. Active filter is easier to tune or adjust as compare to passive filters.	
	3. No loading problem because active filter provides excellent isolation between	
	individual stages due to high input impedance.	
	4. Active filters are small in size and less bulky (due to absence of "L") and rugged.	
	5. Non floating input and output.	
f)	Define roll of rate and order of filter.	2M
Ans:	1. Roll of rate is the rate of change of gain with frequency. Roll of rate is always measured in	2M
Alls:	dB/decade.	2111
	2. The roll of rate is called the order of the filter.	
	It depends on the rate at which filter's gain changes with frequency.	
	For example:	
	•	
	i) If roll off rate is -20 dB / decade or +20 dB / decade then the filter is of 1st order.	
	ii) If roll of rate is-40 dB / decade or +40 db / decade then the filter is of 2nd order and so on	
g)	State the function of following pins of IC 555	2M
8)	i) Threshhold	
	ii) Discharge	
Ans:	i) Threshhold voltage- When positive going pulse is applied at this pin but it is more	2M
	positive than reference voltage (2/3vce) of upper comparator. Hence, o/p of upper	
	comparator becomes high i.e. S=0, R=1. Due to this, flip-flop becomes reset that's why	
	\bar{Q} =1 which goes to base of NPN transistor is ON & the external capacitor ct starts	
	discharging to transistor to words zero. At the same time, the o/p of timer goes low.	
	ii) Discharge- The external capacitor Ct is connected at this pin and capacitor discharge	
	through this pin	1

Q.2	Attempt any THREE of the following:	12-Total Marks
		1.111.115

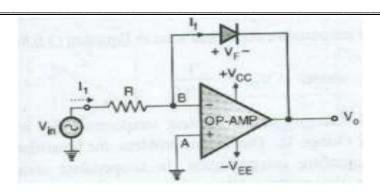
c)	Draw the circuit diagram of grounded load type V to I converter and derive expression for its output.	4M
Ans:	Diagram:	2M
	• The analysis of the circuit can be done by following two steps: First step is to determine the voltage V_1 at the non-inverting (+) terminal and the second step is to establish relationship between V_1 and the load current I_L . • Applying KCL at node V_3 , $I_1 = I_1 + I_2$ (1) But $I_1 = V_{in} - V_1 / R$ and $I_2 = V_{or} V_1 / R$. Substituting these expression into equation (1) $I_L = \frac{V_{in} - V_1}{R} + \frac{V_o - V_1}{R}$ $\therefore V_{in} + V_o - 2 V_1 = I_L R$ $\therefore V_1 = \frac{V_{in} + V_o - I_L R}{2}$ ass we have obtained the expression for V1.	2M


a)	Describe the basic integrator circuit using op-amp.	4M
Ans:	The basic operational amplifier integrator circuit consists of an op amp with a capacitor between the output and the inverting input, and a resistor from the inverting input to the overall circuit input as shown in figure.	2M explanatio with equation
	Vin A -Vout	1M for Diagram
	Equation for output of integrator as shown below where input is Vin and Rin input resistance and C is capacitor	
	$V_{out} = -\frac{1}{R_{in}C}\int_0^t V_{in} dt = -\int_0^t V_{in} \frac{dt}{R_{in}.C}$	
	By equation it is understood that output is proportional integration of input voltage. Output of given input signal as shown below.	
	Input Signal Output Signal	
	Square Wave Spikes	1M for an one outpu waveform
	Triangular Wave Rectangular	
	Sine Wave Cosine Sine	
b)	Compare comparator and Schmitt trigger circuit (any four points).	4M
Ans:		1M
	Sr. Parameter Comparator Schmitt Trigger	each any point
	1 Feedback Absent i.e. open loop Present i.e. closed loop	
	2 Hysteresis Absent Present	1

	3	Number of reference	One	TWO (UTP and LTP)	
	4	Application	Zero crossing detector, Level detector	Sine wave to Square wave generator, pulse counter	
	5	Definition	Comparator compare two signal one is called reference and other is called input signal	Schmitt trigger is inverting comparator with positive feedback	
	6	Noise Margin	Low	More	
	7	Level	single	Double	
	8	Diagram	Non-inverting input V Inverting input Negative power supply Negative power supply	V _{ie} \Diamond	
c)		n a first order l sume C=0.01µl	 low pass filter at a cut off frequen F)	ncy 12KHz with pass band gain	4M
Ans:	$F_h = 1$ $A_f=1$ $2=1$ R_2/R_1	2Khz ,A _f =2 + R _f / R ₁ + R _f / R ₁			2 M Resistor feedbac (1M for formula
	12K= R=1/2	/2πRC 1/2πRC 2πX 12KX.01μF 326 KΩ Actual	l value (1.2 KΩ)		2M for Resistor cut off frequen
	Circu	nit Diagram:	Low Pass Filter Stage R =1.2kequencies high frequencies		1 for formula
		Vin	.01uF R1 10K Rf=	Vout 10K	
			+		

Ans: Diagram: -2M diagram · Vec Circuit A voltage controlled oscillator is an oscillator whose frequency is controlled by an input 2Mvoltage. Basically, the voltage input into the VCO controls how many times a digital explanation signal will oscillate in a given time period. It is basically astable multivibrator configuration in which pin 5 is connected to variable voltage terminal in which square wave generator which output frequency can vary by varying voltage at pin 5. OR + Vcc 555 Timing Capacitor Voltage Waveform Circuit Voltage Controlled Oscillator Pin 5 terminal is voltage control terminal and its function is to control the threshold and trigger levels. Normally, the control voltage is ++2/3V_{CC} because of the internal voltage divider. However, an external voltage can be applied to this terminal directly or through a pot, as illustrated in figure, and by adjusting the pot, control voltage can be varied. Voltage across the timing capacitor is depicted in figure, which varies between +V_{control} and ½ V_{control}. If control voltage is increased, the capacitor takes a longer to charge and discharge; the frequency, therefore, decreases. Thus the fre-quency can be changed by changing the control volt-age. 12-Total **Q.4** Attempt any THREE of the following: Marks a) **4M** Compare open loop and closed loop configuration of operational

	amplifie	r(any four poi	ints)		
Ans:	Sr. No	Parameter	Open Loop Configuration	Closed loop configuration	4M
				1 0	
	1	Feedback	Absent	Present	
	2	Voltage Gain	High ideally infinite	Low	
	3	Gain control	Not possible	possible	
	4	Input Resistance	No change or Cannot Control	Can Control by adjusting feedback component	
	5	Output Resistance	No change or Cannot Control	Can Control by adjusting feedback component	
	6	Bandwidth	No change or Cannot Control	Can Control by adjusting feedback component	
	7	Offset voltage	No change or Cannot Control	Can Control by adjusting feedback component	
	8	Application	Comparator	All application circuit such as amplifier, oscillator, filter, adder subtract or and so on	
	9	Stability	unstable	stable	
b)		he circuit diag on for its gain	ram of closed loop non-invertin	ng amplifier and derive	4M
Ans:	Diagran	1:	I ₁ V _p	+V ₅	2 M
	Where Vn=Vi=	Vn is node volt	oncept $V_n = V_p = V_i$ age at inverting terminal and V_i is	s input voltage	2M Explanation


	Since no current is flow between inverting and non inverting terminal	
	$I_1=I_2=I$	
	Vi=R1X I	
	$Vo=Rf X I + R_1 XI$	
	Voltage Gain= Vo/ Vi = $(Rf X I + R_1XI)/ R1X I$	
	$= \frac{(Rf + R1)}{R1}$	
	= 1 + Rf/R1	
<u>c)</u>	Explain the working of PLL as multiplier using block diagram.	4M
Ange		2M
Ans:	Diagram:-	21 V1
	Input Phase Amplifier LPF VCO fout = Nfin	
	Detector Ampunet 1 cm	
	tin Detector	
	565 PLL	
	Divide by N network	
	fout/N	
	75,75 T	
	A frequency multiplier can be designed using a PLL and a 'divided by N' counter. The	2M
	frequency divider is inserted between the VCO and phase detector of PLL circuit.	2M
	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output	2M
	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the	2M
	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the output of the counter fn. hence fin=fn= (fout)/N	2M
	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the output of the counter fn. hence fin=fn= (fout)/N where foutis the <u>VCO</u> output frequency,	2M
	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the output of the counter fn. hence fin=fn= (fout)/N where fout is the \underline{VCO} output frequency, Therefore, fout =NX fin.	2M
	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the output of the counter fn. hence fin=fn= (fout)/N where foutis the VCO output frequency, Therefore, fout =NX fin. Thus when the system is in lock, the VCO is actually running at the multiple of input	2M
	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the output of the counter fn. hence fin=fn= (fout)/N where foutis the VCO output frequency, Therefore, fout =NX fin. Thus when the system is in lock, the VCO is actually running at the multiple of input frequency. The desired amount of multiplication can be obtained by selecting a proper	2M
d)	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the output of the counter fn. hence fin=fn= (fout)/N where foutis the VCO output frequency, Therefore, fout =NX fin. Thus when the system is in lock, the VCO is actually running at the multiple of input frequency. The desired amount of multiplication can be obtained by selecting a proper divide by N network, where N is an integer.	
	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the output of the counter fn. hence fin=fn= (fout)/N where foutis the VCO output frequency, Therefore, fout =NX fin. Thus when the system is in lock, the VCO is actually running at the multiple of input frequency. The desired amount of multiplication can be obtained by selecting a proper	4M
d) Ans:	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the output of the counter fn. hence fin=fn= (fout)/N where foutis the VCO output frequency, Therefore, fout =NX fin. Thus when the system is in lock, the VCO is actually running at the multiple of input frequency. The desired amount of multiplication can be obtained by selecting a proper divide by N network, where N is an integer. Draw the neat circuit diagram of first order high pass filter and explain its	
	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the output of the counter fn. hence fin=fn= (fout)/N where foutis the VCO output frequency, Therefore, fout =NX fin. Thus when the system is in lock, the VCO is actually running at the multiple of input frequency. The desired amount of multiplication can be obtained by selecting a proper divide by N network, where N is an integer. Draw the neat circuit diagram of first order high pass filter and explain its	4M
	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the output of the counter fn. hence fin=fn= (fout)/N where foutis the VCO output frequency, Therefore, fout =NX fin. Thus when the system is in lock, the VCO is actually running at the multiple of input frequency. The desired amount of multiplication can be obtained by selecting a proper divide by N network, where N is an integer. Draw the neat circuit diagram of first order high pass filter and explain its operation.	4M
	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the output of the counter fn. hence fin=fn= (fout)/N where foutis the VCO output frequency, Therefore, fout =NX fin. Thus when the system is in lock, the VCO is actually running at the multiple of input frequency. The desired amount of multiplication can be obtained by selecting a proper divide by N network, where N is an integer. Draw the neat circuit diagram of first order high pass filter and explain its operation.	4M
	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the output of the counter fn. hence fin=fn= (fout)/N where fout is the VCO output frequency, Therefore, fout =NX fin. Thus when the system is in lock, the VCO is actually running at the multiple of input frequency. The desired amount of multiplication can be obtained by selecting a proper divide by N network, where N is an integer. Draw the neat circuit diagram of first order high pass filter and explain its operation. Inverting filter	4M
	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the output of the counter fn. hence fin=fn= (fout)/N where foutis the VCO output frequency, Therefore, fout =NX fin. Thus when the system is in lock, the VCO is actually running at the multiple of input frequency. The desired amount of multiplication can be obtained by selecting a proper divide by N network, where N is an integer. Draw the neat circuit diagram of first order high pass filter and explain its operation.	4M
	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the output of the counter fn. hence fin=fn= (fout)/N where fout is the VCO output frequency, Therefore, fout =NX fin. Thus when the system is in lock, the VCO is actually running at the multiple of input frequency. The desired amount of multiplication can be obtained by selecting a proper divide by N network, where N is an integer. Draw the neat circuit diagram of first order high pass filter and explain its operation. Inverting filter	4M
	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the output of the counter fn. hence fin=fn= (fout)/N where fout is the VCO output frequency, Therefore, fout =NX fin. Thus when the system is in lock, the VCO is actually running at the multiple of input frequency. The desired amount of multiplication can be obtained by selecting a proper divide by N network, where N is an integer. Draw the neat circuit diagram of first order high pass filter and explain its operation. Inverting filter	4M
	frequency divider is inserted between the VCO and phase detector of PLL circuit. Therefore, one input of the phase comparator is the input signal and the other is the output of 'divided by N' counter. when the lock is established the input frequency fin equals the output of the counter fn. hence fin=fn= (fout)/N where fout is the VCO output frequency, Therefore, fout =NX fin. Thus when the system is in lock, the VCO is actually running at the multiple of input frequency. The desired amount of multiplication can be obtained by selecting a proper divide by N network, where N is an integer. Draw the neat circuit diagram of first order high pass filter and explain its operation. Inverting filter	4M

)ARD OF TECHNICAL EDUCATION

		Phase Detector:	
		The input signal 'Vi' with an input frequency 'Fi' is conceded by a phase detector. Basically the phase detector is a comparator that compares the input frequency fi through the feedback frequency fo. The output of the phase detector is (fi+fo) which is a DC voltage.	
		Low Pass Filter: The out of the phase detector, i.e., DC voltage is input to the low pass filter (LPF); it removes the high-frequency noise and produces a steady DC level, i.e., Fi-Fo. The Vf is also a dynamic characteristic of the PLL	
		VCO: The output of the low pass filter, i.e., DC level is passed on to the VCO. The input signal is directly proportional to the output frequency of the VCO (fo). The input and output frequencies are compared and adjusted through the feedback loop until the output frequency is equal to the input frequency. Hence, the PLL works like free running, capture, and phase lock.	
Q.5		Attempt any TWO of the following	12 Total Marks
	(a)	Explain the function of sample and hold circuit by using op-amp.	6M
	Ans:	Input buffer Basic sample Output buffer HVcc H	Circuit diagram-3M
		The n-channel MOSFET is driven by a control voltage VC acts as a switch. The control voltage VC is applied to the gate of the MOSFET. The circuit diagram can be split into three stages. First stage is the voltage follower second one is the switch and capacitor and the third one is a gain the voltage follower. When VC is high the MOSFET turns on and acts like a closed switch .This is sampling mode .The capacitor charges through the	Explanation - 3M
		MOSFET to the instantaneous input voltage. As soon as VC=0 the MOSFET turns off and the capacitor is disconnected from OPMP1 output. Capacitor cannot discharge through amplifier A2 due to its high impedance. Thus this is the hold mode in which the capacitor holds the latest sample value. The time period during which the voltage across capacitor is equal to input voltage is called sample period. The time period during which the voltage across capacitor is constant is called Hold period.	

Ans:

The expression for the current passing through diode is always given by,

$$I_F = I_O \left(e^{\frac{V_F}{V_T \eta}} - 1 \right)$$

Where,

 $I_F = Feedback current through diode$

 $I_0 = Reverse saturation current$

 $V_F = Forwardvoltagedrop$

Π = constant i.e. 1 for Ge& 2 for Si

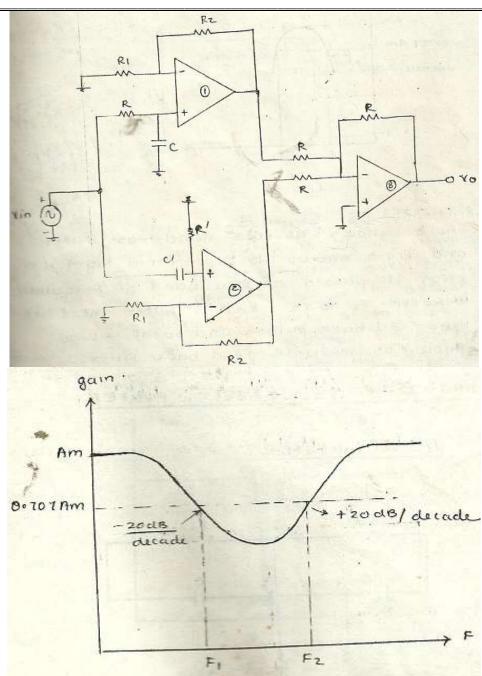
$$V_T = \frac{KT}{q}$$

K = Boltzmann's constant = 1.38 * 10⁻²³

T = Temperature in Kelvin [273K = 0°C]

 $q = Electric charge = 1.692*10^{-19} C$

As $e^{\frac{V_F}{V_T\eta}} \gg 1$


$$\therefore I_F = I_O \left(e^{\frac{V_F}{V_T \eta}} \right)$$

(c)	Sketch the circuit diagram of active wide band reject filter and explain it.	6M
	$\therefore V_o \propto log_e V_i$	
	$V_O = -\eta V_T log_e \left(\frac{V_i}{R_i I_O}\right)$	
	10 10 10 15 15 15 15 15 15 15 15 15 15 15 15 15	
	Put this into eqn 2	
	$\therefore I_F = \frac{V_i}{R_i}(\text{Since } V_B = 0 \text{ from virtual ground concept})$	
	$\therefore \frac{V_l - V_B}{R_l} = I_F$	
	$I_1 = I_B + I_F$ $\therefore I_1 = I_F$	
	Now apply KCL at node B,	
	$\therefore V_O = -\eta V_T \log_e \left(\frac{l_F}{l_O}\right) \dots (2)$	
	$-V_F = V_O$	
	$V_F = -V_O$ (Since $V_B = 0$ from virtual ground concept)	
	$V_F = V_B - V_O$	
	Now from figure,	
	$V_F = \eta V_T log_e \left(\frac{l_F}{l_O}\right) \dots (1)$	
	$\therefore \frac{V_F}{nV_T} = log_e\left(\frac{I_F}{I_O}\right)$	
	As $log_e e = 1$	
	$\frac{V_F}{\eta V_T} log_e e = log_e \left(\frac{I_F}{I_O}\right)$	
	VOC 17.00	
	$log_e\left(e^{rac{V_F}{V_T\eta}} ight) = \ log_e\left(rac{I_F}{I_O} ight)$	
	Taking natural log on both side,	
	$\frac{I_F}{I_O} = \left(e^{\frac{V_F}{V_T \eta}}\right)$	

Ans:

fied)

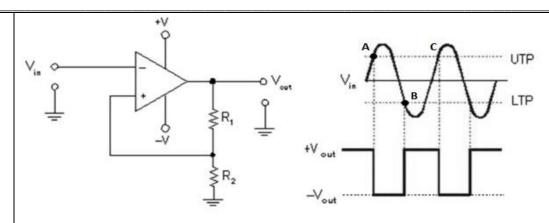
- 27001 - fie

This filter is obtained by applying input simultaneously to low pass filter and high pass filter o/p of both the filters are given to adder CKT. Here we have designed that the cut off frequency of LPF must be less than cut off frequency of high pass filter.

Figure-1 shows CKT diagram of BRF and figure -2 shows corresponding o/p op-amp

- 1. Acts like LPF & op-amp
- 2. Acts like HPF. op-amp
- 3. Acts like adder ckt grom frg-2 it ₁3 clear that this ckt passes all the frequencies except the frequencies between F₁ & Fz.

Q.6 Attempt any TWO of the following:


12 Total
Marks

MAHARASHTRA (Autonomous))ARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001 -	The same	fied)

Ans:	Inverting Amplifier using Op-Amp: Circuit Diagram: Vin OPT AMPLIFICATION OF THE OPT OPT OF THE OPT OPT OF THE OPT	Diagram- 3M
	Derivation for gain:	
	Apply KCL at node A, we get $I_1 = I_F + I_B \qquad(1)$ But ideally Input impedance of op amp is infinite, Therefore $I_B = 0$ $I_1 \cong I_F$ $\frac{Vin - V2}{R1} = \frac{V2 - Vo}{RF}$ According to virtual ground condition, $V1 = V2 = 0$ $\frac{Vin}{R1} = \frac{-Vo}{RF}$ $V_o = -\left(\frac{R_F}{R_1}\right)V_{in}(2)$ $A_V = \frac{Vo}{Vin} = -\left(\frac{R_F}{R_1}\right)(3)$	Derivation of output expression 3M
(b)	Where, Av is closed voltage gain Explain Schmitt trigger circuit using Op-amp and how UTP and LTP are calculated.	6M
Ans:	Diagram:	2M

(c)

fied)

A Schmitt trigger converts an irregular shaped waveform into a square wave. It uses positive feedback. It is a special type of comparator in which the output changes from one saturation level to other depending on differential input voltage.

Before applying any input, the output is assumed to be small and positive. This is the output offset voltage. The differential voltage Vid is positive; hence the output is driven into +Vsat. At this instant, the potential at point A is

$$V_A = \frac{\dot{R_2}}{R_{1+}R_2}.(+Vsat)$$

This is called as upper threshold point or upper trigger point. When the input becomes more positive than UTP, the differential input is negative. Therefore, the output is driven in –Vsat. At this instant the potential at the point B

$$V_B = \frac{R_2}{R_{1+}R_2}.\left(-Vsat\right)$$

This is the lower threshold point. The output remains at –Vsat until input voltage becomes more negative than LTP.

When input crosses and becomes more negative than LTP, the differential input voltage is positive and the output becomes +Vsat.

V_{UTP} and V_{LTP} is calculated by

$$V_{UTP} = \frac{R_2}{R_{1+}R_2}.(+Vsat)$$

$$V_{LTP} = \frac{R_2}{R_{1+}R_2}.\left(-Vsat\right)$$

Explain the circuit diagram of phase shift oscillator using op-amp.

Explaination n-2M

Waveform-1M

 V_{UTP} and V_{LTP} -1M

6M

fied)

Ans:

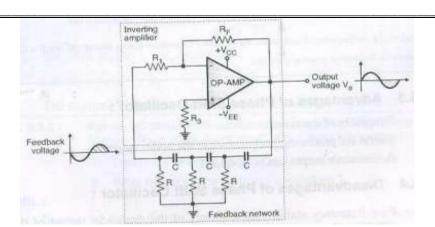


Diagram-3M

Explanation: The Op- Amp is used as an inverting amplifier. Therefore it introduces a phase shift of 180^0 between its input and output.

Explainatio n-3M

The output of the inverting amplifier is applied at the input of the RC phase shift network. This network attenuates the signal at its input and feeds it to the amplifier input. The level of attenuation is decided by the feedback factor β . The gain of the inverting amplifier is decided by the values of RF and R1. This gain is adjusted in such a way that the product $|A\beta|$ is slightly greater than 1. It can be proved that the value of feedback factor β at the frequency of oscillations is β =1/29. For sustained oscillations, the loop gain $|A\beta| \ge 1$. Therefore, in order to make the loop gain $|A\beta| \ge 1$, the gain of the inverting amplifier A should be greater than or equal to 29. Gain of the inverting amplifier is given by,

|A| = RF/R1

Therefore, RF / R1 \geq 29 or RF \geq 29R1

These values of RF and R1 will insure sustained oscillations.

The expression for frequency of oscillations of an RC phase shift oscillator using OPAMP is given by Fo= 1/ $2\pi\sqrt{RC}$