

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Principles of Database

Subject Code:

22321

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q.N.		Scheme
1.	(A)	Attempt any FIVE of the following:	10
	(a)	Define the term Database Schema	2M
	Ans.	The overall design of the database is called the database schema.	Correct
		A schema diagram displays only names of record types (entities) and	definitio
		names of data items (attributes) and does not show the relationships	п
		among the various files.	<i>2M</i>
	(b)	List 4 types of Database languages.	2M
	Ans	Four types of database languages are:	Each
		1. DDL (Data Definition Language)	type
		2. DML (Data Manipulation Language)	½ M
		3. DDL (Data Control Language)	
		4. TCL (Transaction control language)	
	(c)	Define the term Data Model.	2M
	Ans	Underlying structure of the database is called as data model. It is a	Correct
		collection of conceptual tools for describing data, data relationships,	definitio
		data semantics and consistency constraints. Data models define	п
		how data is connected to each other and how they are processed and	<i>2M</i>
		stored inside the system.	

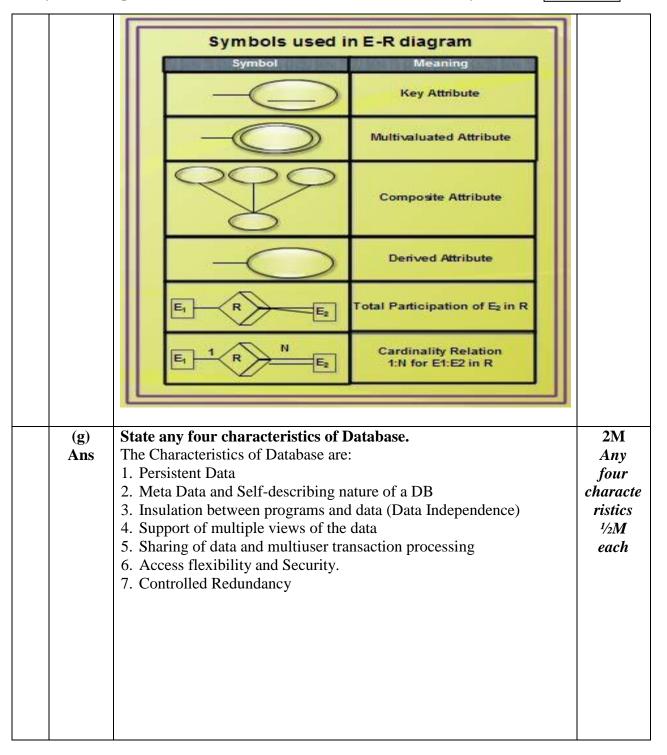
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Principles of Database

Subject Code: 22321


(d)) Defin	e the term Foreign Key.		2M			
An			ed to link two tables togeth				
	FORE	EIGN KEY is a field (or co	llection of fields) in one tabl	e that <i>definitio</i>			
			another table. It acts as a				
	refere	ference between tables because it references the primary key of					
	anothe	another table, thereby establishing a link between them.					
(e)	Enlist	Enlist components of database.					
An	s A data	abase system involves four n	najor components.	Each			
	1. Dat			compon			
	2. Har	dware		<i>ent ½ M</i>			
	3. Sof	tware					
	4. Use	ers					
(f)	Draw	and name 4 symbols used	in ER diagram	2M			
An	S			Any			
		SYMBOL	MEANING	four			
			Entity Type	symbols ¹ /2 M			
			Weak Entity Type	each			
		· · · · · · · · · · · · · · · · · · ·	Relationship Type				
		\diamond	Identifying Relationship Type				
			Attribute				
		<u>[</u>	·				
	E.			2			
11				1			

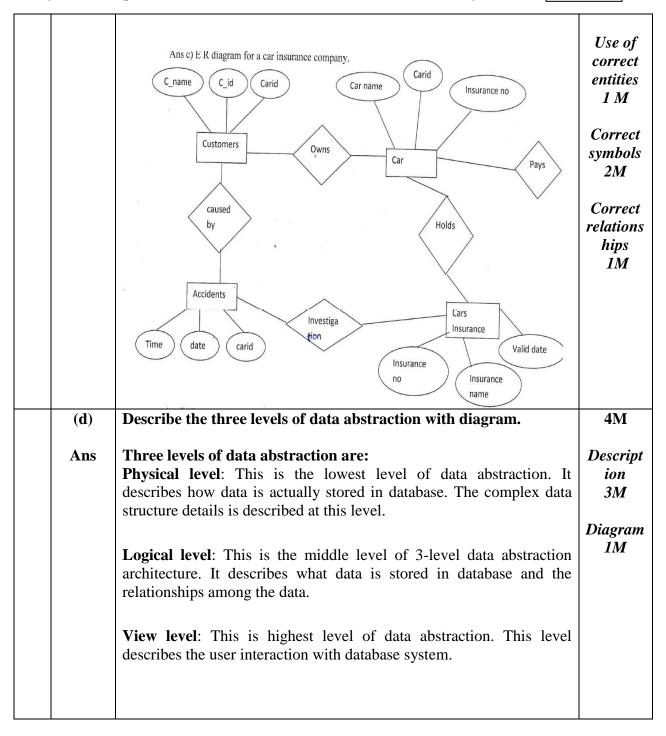
WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Principles of Database

Subject Code: 22321

WINTER – 2018 EXAMINATION MODEL ANSWER

Subj	ject: Prin	ciples of Database	Subject Code: 223	21
2.	(a) Ans	Attempt any THREE of the follo Distinguish between file processing	8	12 4M
	1115	Database Management system	File processing system	Any four
		1. Presence of Self-describing nature of a database system and Metadata.	1. File processing don't contain any self describing feature and neither posses metadata.	points 1M each
		3. Support of multiple views of the data i.e Each user may see a different view of the database, which describes only the data of interest to that user	3.File processing system don't support multiple views.	
		4. Sharing of data and multi-user transaction processing i.e allowing a set of concurrent users to retrieve from and to update the database.	4.It is not possible to share data and multi user transaction simultaneously among concurrent users in case of file processing system	
		5. Controlling Redundancy is one of most important feature to use DBMS	5. The traditional file approach, each group independently keeps their own file.	
	(b) Ans	Describe object-oriented data mo Object Oriented Model Object oriented models were shortcomings of conventional mo		4M


Subject: Prine	ciples of Database	Subject Code: 22	321
	and network model. An object-oriented datab objects whose behavior, state, and relations accordance with object-oriented concepts (such a hierarchy etc.) In this both data and their relationship are organic a single structure known as object .	hips are defined in as objects, class, class	Descript
	Object includes information about relationship within the object, as well as information about other objects.		
	Lond C Point Lonlor Color	ShapeList shapeList : IList Paint()	Diagram 2M
(c) Ans.	Construct an E-R diagram for a car insurat customers own one or more cars. Assume suits		4M

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Principles of Database

Subject Code:

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Principles of Database

Subject Code:

		View 1 View 2 View n Beginnersbook. Iogical level Physical level Physical level	
3	(a) Ans	 Attempt any THREE of the following: Explain Integrity constraints with example. Not Null: By default, all columns in tables allows null values. When a NOT NULL Constraint is enforced on column or set of columns it will not allow null values. Example SQL> CREATE TABLE STUDENT (ROLL_NO NUMBER (5), NAME VARCHAR2 (20) NOT NULL); Check Constraint: The constraint defines a condition that each row must satisfy. A single Column can have multiple check condition. Example SQL> CREATE TABLE EMP (ID NUMBER (5), NAME VARCHAR2 (10), SAL NUMBER (10) CONSTRINT CHK_SAL CHECK (SAL>15000)); Primary Key constraint: It is used to avoid redundant/duplicate value entry within the row of specified column in table. It restricts null values too. Example SQL> CREATE TABLE EMP (ID NUMBER (5) CONSTRAINT ID_PK PRIMARY KEY, NAME VARCHAR2 (10), SAL NUMBER (10)); Unique Constraint: The UNIQUE constraint uniquely identifies each record in a database table. The UNIQUE and PRIMARY KEY constraints both provide a guarantee for uniqueness of a column or set of columns. It allows null value. Example CREATE TABLE PERSONS (P_ID NUMBER CONSTRAINT P_UK UNIQUE, FIRSTNAME VARCHAR2(20), CITY VARCHAR2(20)); 	12 4M For any four integrity constrai nt 1M each

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Principles of Database

Subject Code:

22321

(b) Ans	 Referential Integrity Constraint: It is a relational database concept in which multiple tables share a relationship based on the data stored in the tables, and that relationship must remain consistent. A value of foreign key is derived from primary key which is defined in parent table. Example CREATE TABLE DEPARTMENT (EMP_ID NUMBER(5) REFERENCESEMP(EMP_ID), DNO NUMBER(3)); Explain benefits and drawbacks of Denormalization. Benefits of denormalization (consider any 2) Reduce number of relations : It reduce the number of relations because it combines two relations into one new relation. Reduce number of foreign keys-It reduce number of foreign keys because number of relations are reduced. Minimizes need for joins-It minimizes need for joins because it combines many relation.(consider any 2) Slow Data Updates-It may speed up the retrieval but can slow down database updates Increase size of relations -It can increase size of the relations due to combining multiple relations into one single relation. Complex implementation -It may simplify implementation in some cases but may make it more complex in other. Application Specific -It is always application-specific and needs Application Specific -It is always application-specific and needs 	4M Any 2 Benefits 2M Any 2 Drawbac ks 2M
(c)	to be re-evaluated if the application changes. Explain primary key and candidate key with example.	4 M
Ans	 Primary Key: A primary key is an attribute in Relation that uniquely identifies the rows in relation. A Primary key does not hold NULL values and duplicate values. OR A key which is selected by the designer to uniquely identify the entity is called as Primary key. A primary key cannot contain duplicate values and it can never contain null values inside it. Example: In a Student table(Rollno , Name, Percentage) , Rollno is the primary key 	Each term definitio n with example 2M

Subject: Pri	nciples of Database Subject Code:	22321	
	Candidate key In a relation there may be a key or combination of keys which uniquely identify the record. Such a key is called as Candidate key. Example : Consider a Student table (Rollno,Name,Percentage), if (Rollno) and Name)both are unique then both are identified as candidate keys. OR Consider a Student table (Rollno,Name,Percentage), if (Rolln ,Name) is unique , then (Rollno, Name) can be a candidate key and only if Name and Rollno individually are not unique.	d(no	
(d) Ans	 Explain advantages of centralized and distributed databases. Advantage of Centralized databases (consider any 2) Data integrity is maximized -Data integrity is maximized at data redundancy is minimized because data is stored at a sing place. Easier Database Administration -It is easy for database administration because Centralized databases are easy to manag maintain, update, backup etc. Cost effectiveness – Cost will be less because, database is locate ,stored and maintain at one central location Easy Modification, Access and Analysis -Data kept in the san location which makes modification, access and analysis easy. Advantage of Distributed databases (consider any 2) Better Response – If data is distributed in an efficient manner then user requests can be met from local data itself, thus providin faster response More Reliable - When the data and DBMS software a distributed over several sites one site may fail while other site continue to operate ,which makes database more reliable Easier Expansion - : Expansion can be easily achieved by addin processing and storage power to the existing network. Improved Performance -These systems provide great efficiency and better performance Resource Sharing -Since data is distributed, a group of users ca easily share and use data of different sites 	de adva se eau ge, eau type ed ne er, ng are es ng ter	two inta of ch

Г

Subj	ject: Prin	ciples of l	Database			S	ubject Co	ode: 223	21	
4	(a) Ans	 Describ First No A relation OR A relation Example 	e the firs ormal Fo ation is on has at ation R is attributes es not allo e	t normal form (1NF) said to be most a sing s said to be s of R are at ow multival	e following: form with its exactly 1NF if and o gle (atomic) val in first normal tomic. ued attributes a on, pno, qty)	only if e ue. form (1	NF) if the	e domain	12 4M Descr ion 2M Any releve exam 2M	I ript I I y ant ple
			SNO	SNAME	LOCATION	PNO	QTY			
			S1	Abc	Mumbai	P1	200			
			S2	Pqr	Pune	P 2	300			
			\$3	Lmn	Delhi	P1	400	-		
			ve relation ut it is no		IF as all the de	omains	are having	g atomic		

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Prin	ciples	of Database	Subject Code: 223	321
(b)	Com	pare Hierarchical Database Mo	del with Network Model.	4 M
Ans	Sr No	Hierarchical Database Model	Network Model	
	1	Network Model represents tree	Network Model represents	
		like structure with one root.	tree like structure with many	Any 4
			roots.	differen
	2	Reflects 1:N (One to many)	Reflects M:N (Many to	ces 1M
		relationship	many) relationship	each
	3	There can be only one node at	It allows a record to have	
		the parent level	more than one parent.	
	4	Example:	Example :	
		College Department Course Teacher Student	Customer Manager Salesma	
	5	Relationship between records is of parent child type	Relationship between records is expressed in the form of pointers or links(Graphs).	
	6	Searching for a record is very difficult since one can retrieve a child only after going through its parent record.	Searching a record is easy since there are multiple access paths to a data element	
	7	There are multiple occurrences of child records, which lead to problem of inconsistency during the update operations	This model is free from update anomalies because there is only a single occurrence for each record set.	
	8	Record relationship implementation is simple due to the use of pointers	Record relationship implementation is complex due to the use of pointers	

Г

Subject: Prin	ciples of Database	Subject Code:	22321	
(c) Ans	 Explain three level architecture of Database There are following three levels or layers of E External Level : Describes part of the database group is interested in. Conceptual Level: Describes structure of the community of users. Internal Level : Describes physical storage st External Level or View level It is the users' view of the database. This level the database that is relevant to each user. Exwhich is closest to the end users. This level which individual users view data. Individual users 	e DBMS architecture: ase that a particular e whole database for tructure of the database el describes that par xternal level is the deals with the way	user <i>Expl</i> tio 2M or a ase. t of one y in	ana n
	 views according to the user's requirement. Conceptual Level or Logical level It is the community view of the database. The data is stored in the database and the relation. The middle level in the three level archited level. This level contains the logical structure of seen by the DBA. It is a complete view of the organization that is independent of any. The conceptual level represents all entities, the relationships. Internal level or physical level It is the physical representation of the database level describes how the data is stored in the level is the one that concerns the way the data on the hardware.	nis level describes workships among the describes workships among the describes of the entire databashe data requirement storage considerationeir attributes, and the data base. The interval	vhat lata. tual e as s of ons. heir This rnal	

WINTER – 2018 EXAMINATION MODEL ANSWER

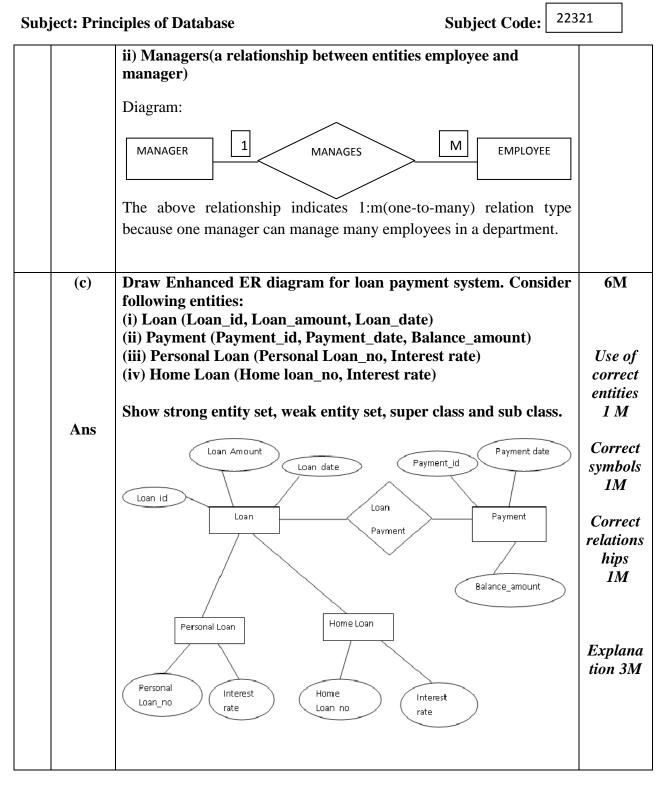
22321 Subject Code: **Subject: Principles of Database** Diagram 2M End users View 1 View 2 View 3 View n External Level External Schema External / Conceptual Mapping Conceptual Level Conceptual Schema Conceptual / Internal Mapping Internal Schema Physical Level Database Fig. Three Level Architechture of DBMS **(d)** Explain client / server database system. **4**M Note: Any other relevant diagram can be considered Ans Diagram *1M* Client Server with database Figure : Client/ Server database System Explana It has two logical parts -client and server. The clients are the tion machines which requests for the service to the server. Server is the *3M* machine which serves to the clients. Applications and tools of DBMS run on client. DBMS software runs on server. Computer networking

Subject: Prin	ciples of Database Subject Code: 223	321	
	allows some task to be executed on a server system and some tasks on client system. This leads to development of client server architecture. There are different types of client/server architecture such as		
	 Two tier architecture Three tier architecture, client systems directly approach database servers whereas in three tie architecture, there exists a middle layer which acts as application server to receive and send requests from client machine to database server and vice versa. 		
(e)	Explain various types of Relational constraints.	4 M	[
Ans	 Relational Constraints Relational constraints are a set of rules. It is used to maintain the quality of information. Integrity constraints ensure that the data insertion, updating, and other processes have to be performed in such a way that data integrity is not affected. Thus, integrity constraint is used to guard against accidental damage to the database. Types of Relational integrity Constraints are as follows 1. Domain constraints 2. Entity integrity constraints 3. Referential Integrity Constraints Domain Constraint - It is used to maintain value according to user specification For example: Not null, check constraint. Entity integrity constraintsit provides a way of ensuring that changes made to the database by authorized users do not result in a 	Expla tion w any const nts 1 eac	ina vith 4 rai M
	 loss of data consistency. For example: Primary key, unique constraints Referential Integrity Constraints – It establishes parent child relationship between two tables. For example :Foreign key constraints 		

Subj	ect: Prin	ciples of Database Subject Code: 223	21	
5	(a)	Attempt ant TWO of the following Consider relation R with five attributes L, M, N, O, P. You have been given following dependencies L→M, MN→P, PO→L (i) List all keys for R.	12 6M	
		(ii) In what Normalized form R is? Justify your answer		
	Ans	(i) List all keys for R. Since Right hand side does not have NO So (NO)+ =NO Now Combining NO with L,M,P we get Keys as LNO,MNO,PNO	Each I 3M	bit
		(ii) In what Normalized form R is? Justify your answer M,P,L are prime attributes, so R(L,M,N,O,P) is in 3NF.		
	(b)	Draw ER diagram for Banking system, to represent a customer has account scenario. Identify entities with their attributes and draw a diagram.	6M	

WINTER – 2018 EXAMINATION MODEL ANSWER

22321 Subject Code: **Subject: Principles of Database** Use of correct Bank_id Cust_id Bank_id Bank_name entities Acc_no 2MBANK HAS CUSTOMERS *Correct* symbols Location 2MHAS Transc *Correct* relations hips ACCOUNT TRANSACTION 2MAcc_no Withdraw AccName Deposit Bank id Consider a single table consisting following columns. Convert it (c) **6M** into 2NF and 3NF. Table (Supplier no, Supplier name, Supplier city.. Order no. Order_quantity, order_amount, product name) Table 1 Schema given: Ans Each (Supplier no, Supplier conversio Name,Supplier_city,Order_no,Order_quantity,Order_amount,Product_ n 3M oduct name) **Step 1**. To convert It into 2NF, We have to decompose the given table into two tables with fully functional dependencies and establishing a referential integrity constraint relationship among the two tables. Table2: Supplier Details (Supplier_no,Supplier_name,Supplier_city,Order_no) Table 3:Order Details (Order_no, Order_ quantity, Order_amount, Product_code, product_name)


Subject: Principles of DatabaseSubject Code:223.			21	
		Now the above two tables are in 2NF		
		Step 2 : To convert the above tables in 3NF ,We have to decompose them in three tables satisfying the transitive dependencies property.		
		Table 4: Supplier Details (Supplier_no,Supplier_name,Supplier_city)		
		Table 5: Order Details ((Order_no, Order_ quantity, Order_amount)		
		Table 6: Trasaction Details (Supplier_no, Order_no, Product_code, product_name)		
		Hence the above three tables are satisfying Transitive dependencies Thus they are in 3NF.		
6	(a)	Attempt any TWO of the following : Consider 'student' database with appropriate details. Write a procedure to manipulate given database by adding, modifying and deleting records.	12 6N	
	Ans	Let us consider a Schema for student database (Student_id,Student_name,Student_addr,Student_contact)	Eac	ch
		1.To add records into the given database , we have to use Insert into command.	proce re 2M	
		Syntax for inserting the values in the table is as follows:		
		SQL> Insert into values (value1, value2, value3);		
		Example: SQL> Insert into student values(101,'Rajesh',Thane,9889923456);		
		OR		
		Example:		
		SQL> Insert into student values(&Student- id,'&Student_name','&Student_addr,'&Student_contact);		

Г

Subject: Principles of DatabaseSubject Code:2232			
		2.To update records in given database, we have to use UPDA' command.	ГЕ
		The syntax of update command is:	
		Updateset <columnname>=<expression>,<columnname>=<expression< td=""><td>on>;</td></expression<></columnname></expression></columnname>	on>;
		Example	
		SQL> update student set Student_addr= 'Borivili';	
		3.To delete records from the database, we have to use DELET command.	Е
		<u>Syntax:-</u>	
		Delete from where <condition>;</condition>	
		Example: Delete from student where Student_ addr='Thane'; 1 row deleted	
	(b) Ans	For each of following relationship indicate type of relationship indicate type of relationship(1:1, 1:m, m:m)(i) Works in (a relationship between entities dept. and staft(ii) Managers (a relationship between entities employManager)Note: Considering Managers in relationship as Managesi) Works in(a relationship between entities dept and staff)	f)
		Diagram:	bit explan
		STAFF 1 DE	ation
		The above relationship indicates 1:1 (one-to-one) relati because one staff can work in one department only at a given	on type m

Sub	ject: Princ	ciples of Database	Subject Code:	22321	
		1. All the above given entities contains a primary the entities are Strong entity sets.	y key attribute. So	all	
		Example : Loan_id is a primary key attribute pres	sent in loan entity		
		2. There is absence of weak entity sets since all the primary key attribute.	ne entities contain	ı a	
		3 .Loan is a super class present in the above EER	diagram.		
		4. Personal Loan and Home Loan are the sub class	sses present above	e.	