
V2V EDTECH LLP
Online Coaching at an Affordable Price.

OUR SERVICES:
Diploma in All Branches, All Subjects
Degree in All Branches, All Subjects
BSCIT / CS
Professional Courses

V2V EdTech LLP
v2vedtech.com v2vedtech

tel:+919326050669
https://v2vedtech.com/
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/?igshid=MzRlODBiNWFlZA%3D%3D
tel:+919326050669
https://www.youtube.com/@v2vedtechllp
https://v2vedtech.com/
https://www.instagram.com/v2vedtech/?igshid=MzRlODBiNWFlZA%3D%3D

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 19 EXAMINATION
Subject Name: Software Engineering Model Answer Subject Code: 22413

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in
the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner
may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more
Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components
indicated in the figure. The figures drawn by candidate and model answer may vary.
The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed
constant values may vary and there may be some difference in the candidate’s
answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of
relevant answer based on candidate’s understanding.

7) For programming language papers, credit may be given to any other program based
on equivalent concept.

Q.

No

.

Sub

Q.

N.

Answer Marking

Scheme

1 Attempt any Five of the following: 10 M

 a Enlist and explain software characteristics (any two). 2 M

 Ans

1. Software is developed or engineered; it is not manufactured in the

classical sense.

 Although some similarities exist between software development

and hardware manufacture, the two activities are fundamentally

different.

 In both activities, high quality is achieved through good design,

but the manufacturing phase for hardware can introduce quality

problems that are non-existent (or easily corrected) for software.

 Both activities are dependent on people, but the relationship

between people applied and work accomplished is entirely

different.

 Software costs are concentrated in engineering. This means that

software projects cannot be managed as if they were

manufacturing projects

2. Software doesn’t “wear out.”

Each

Characteristics

with

explanation –

1M

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 The idealized curve as shown in above figure is a gross

oversimplification of actual failure models for software.

However, the implication is clear—software doesn't wear out.

But it does deteriorate!

 This contradiction can best be explained by considering the

“actual curve” shown in Figure.

 During its life, software will undergo change (maintenance). As

changes are made, it is likely that some new defects will be

introduced, causing the failure rate curve to spike as shown in

Figure.

 Before the curve can return to the original steady-state failure

rate, another change is requested, causing the curve to spike

again. Slowly, the minimum failure rate level begins to rise—the

software is deteriorating due to change.

3. Although the industry is moving toward component-based

construction, most software continues to be custom built.

 The reusable components have been created so that the engineer

can concentrate on the truly innovative elements of a design, that

is, the parts of the design that represent something new.

 In the software world, it is something that has only begun to be

achieved on a broad scale. A software component should be

designed and implemented so that it can be reused in many

different programs

 A software component should be designed and implemented so

that it can be reused in many different programs. Modern

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

reusable components encapsulate both data and the processing

that is applied to the data, enabling the software engineer to

create new applications from reusable parts.

 For example, today’s interactive user interfaces are built with

reusable components that enable the creation of graphics

windows, pull-down menus, and a wide variety of interaction

mechanisms.

 b Define software on engineering. 2 M

 Ans

Software engineering is the establishment and use of sound engineering

principles in order to obtain economically software that is reliable and

works efficiently on real machines.

Correct

Definition-2M

 c State need of software requirement specification (SRS). 2 M

 Ans

The need of SRS document is to provide

 A detailed overview of software product, its parameters and

goals.

 The description regarding the project's target audience and its

user interface hardware and software requirements.

 How client, team and audience see the product and its

functionality.

Any two

points stating

need of SRS-

2M

 d Define Reactive Risk strategies. 2 M

 Ans A reactive risk strategy monitors the project for likely risks. Resources are

set aside to deal with them, should they become actual problems. More

commonly, the software team does nothing about risks until something

goes wrong. Then, the team flies into action in an attempt to correct the

problem rapidly. This is often called a fire-fighting mode. When this fails,

“crisis management” takes over and the project is in real jeopardy.

Correct

Definition-

2M

 e Specify following cost directives of cocomo:

 Product attributes (any two)

 Hardware attributes (any two).

2 M

 Ans Product attributes –

 Required software reliability extent

 Size of the application database

 The complexity of the product

Hardware attributes –

Product

attributes (any

two)-1M,

Hardware

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 Run-time performance constraints

 Memory constraints

 The volatility of the virtual machine environment

 Required turnabout time

attributes (any

two)-1M

 f Differentiate between Software Quality Management and Software

Quality Assurance (any two points).

2 M

 Ans
Software Quality Assurance

(QA)

Software Quality Control

(QC)

 It is a procedure that

focuses on providing

assurance that quality

requested will be

achieved

 It is a procedure that

focuses on fulfilling the

quality requested.

 QA aims to prevent the

defect

 QC aims to identify and

fix defects

 It is a method to manage

the quality- Verification

 It is a method to verify the

quality-Validation

 It does not involve

executing the program

 It always involves

executing a program

 It's a Preventive technique It's a Corrective technique

 It's a Proactive measure It's a Reactive measure

 It is the procedure to

create the deliverables

 It is the procedure to

verify that deliverables

 QA involves in full

software development life

cycle

 QC involves in full

software testing life cycle

 In order to meet the

customer requirements,

 QC confirms that the

standards are followed

Each correct

differentiation

points- 1M

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

QA defines standards and

methodologies

while working on the

product

 It is performed before

Quality Control

 It is performed only after

QA activity is done

 It is a Low-Level

Activity, it can identify an

error and mistakes which

QC cannot

 It is a High-Level

Activity, it can identify an

error that QA cannot

 Its main motive is to

prevent defects in the

system. It is a less time-

consuming activity

 Its main motive is to

identify defects or bugs in

the system. It is a more

time-consuming activity

 QA ensures that

everything is executed in

the right way, and that is

why it falls under

verification activity

 QC ensures that whatever

we have done is as per the

requirement, and that is

why it falls under

validation activity

 It requires the

involvement of the whole

team

 It requires the

involvement of the

Testing team

 The statistical technique

applied on QA is known

as SPC or Statistical

Process Control (SPC)

 The statistical technique

applied to QC is known as

SQC or Statistical Quality

Control

 g Define Software Quality Assurance. 2 M

 Ans Quality assurance consists of the auditing and reporting functions

of management.

 The goal of quality assurance is to provide management with the

data necessary to be informed about product quality, thereby

gaining insight and confidence that product quality is meeting its

goals.

Correct

Definition-

2M

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

2. Attempt any THREE of the following: 12M

 a Explain Software Engineering as layered technology approach. 4 M

 Ans Software engineering is a layered technology. The layers of software

engineering as shown in the above diagram are:-

1. A Quality Focus:

Any engineering approach (including software engineering) must rest

on an organizational commitment to quality. Total quality

management, six sigma and similar philosophies foster a continuous

process improvement culture, and it is this culture that ultimately

leads to the development of increasingly more effective approaches

to software engineering. The bedrock that supports software

engineering is a quality focus.

2. Process Layer:

The foundation for software engineering is the process layer.

Software Engineering process is the glue that holds the technology

layers together and enables rational and timely development of

computer software. Process defines a framework that must be

established for effective delivery of software engineering technology.

The software process forms the basis for management control of

software projects and establishes the context in which technical

methods are applied, works products (models, documents, data,

reports, forms etc.) are produced, milestones are established, quantity

is ensured and change is properly managed.

3.Methods:

Correct

Diagram -1M,

explanation -

3M

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Software Engineering methods provide the technical ―how to

building software. Methods encompass a broad array of tasks that

include communication, requirements analysis, design modeling,

program construction, testing and support.

4.Tools:

Software Engineering tools provide automated or semi-automated

support for the process and the methods. When tools are integrated so

that information created by one tool can be used by another, a system

for the support of software development, called computer–aided

software engineering is established.

 b Explain with example Decision table 4 M

 Ans Decision table is a software testing technique used to test

system behaviour for different input combinations.

 This is a systematic approach where the different input

combinations and their corresponding system behaviour

(Output) are captured in a tabular form. That is why it is also

called as a Cause-Effect table where Cause and effects are

captured for better test coverage.

 Example 1: Decision Base Table for Login Screen

 The condition is simple if the user provides correct username

and password the user will be redirected to the homepage. If

any of the input is wrong, an error message will be displayed.

Explanation-2

M, Example

of Decision

table- 2 M

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Decision Table

Conditions Rule 1 Rule2 Rule3 Rule 4

Username(T/F
) F T F T

Password(T/F) F F T T

Output(E/H) E E E H

 Legend:

T – Correct username/password

F – Wrong username/password

E – Error message is displayed

H – Home screen is displayed

 Interpretation:

 Case 1 – Username and password both were wrong. The

user is shown an error message.

 Case 2 – Username was correct, but the password was

wrong. The user is shown an error message.

 Case 3 – Username was wrong, but the password was

correct. The user is shown an error message.

 Case 4 – Username and password both were correct, and

the user navigated to homepage.

 c Explain following elements of management spectrum:

i. People

ii. Process

iii. Product

iv. Project

4 M

 Ans The management Spectrum: 4p’s

Effective software project management focuses on the four P’s:

people, product, process, and project.

The People:

Explanation

each element

of

management

spectrum –

1M

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

1. The “people factor” is so important that the Software Engineering

Institute has developed a People Capability Maturity Model (People-

CMM) to continually improve its ability to attract, develop, motivate,

organize, and retain the workforce needed to accomplish its strategic

business objectives.

2. The people capability maturity model defines the following key

practice areas for software people:

a. Staffing

b. communication and coordination

c. work environment

d. performance management

e. Training, compensation, competency analysis and development,

career development, workgroup development, team/culture

development and others.

3. Organizations that achieve high levels of People-CMM maturity have

higher likelihood of implementing effective software project

management practices.

The Product:

1. Before a project can be planned, product objectives and scope should

be established, alternative solutions should be considered and

technical and management constraints should be identified.

2. Without this information, it is impossible to define reasonable (and

accurate) estimates of the cost, an effective assessment of risk, a

realistic breakdown of project tasks, or a manageable project schedule

that provides a meaningful indication of progress.

3. Objectives identify the overall goals for the product (from the

stakeholders’ points of view) without considering how these goals

will be achieved.

4. Scope identifies the primary data, functions, and behaviors that

characterize the product

5. The alternatives enable managers and practitioners to select a “best”

approach, given the constraints imposed by delivery deadlines,

budgetary restrictions, personnel availability, technical interfaces, and

other factors.

The Process:

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

1. A software process provides the framework from which a

comprehensive plan for software development can be established.

2. A small number of framework activities are applicable to all software

projects, regardless of their size or complexity.

3. A number of different task sets—tasks, milestones, work products,

and quality assurance points enable the framework activities to be

adapted to the characteristics of the software project and the

requirements of the project team.

4. Finally, umbrella activities—such as software quality assurance,

software configuration management, and measurement occur

throughout the process.

The Project:

1. To manage complexity, we conduct planned and controlled software

projects.

2. The success rate for present-day software projects may have improved

but our project failure rate remains much higher than it should be.

3. To avoid project failure, a software project manager and the software

engineers who build the product must avoid a set of common warning

signs, understand the critical success factors that lead to good project

management, and develop a common-sense approach for planning,

monitoring, and controlling the project.

 d List and explain basic principles of project scheduling. 4 M

 Ans Basic Principles

 Compartmentalization: The project must be

compartmentalized into a number of manageable activities

and tasks.

 Interdependency: The interdependency of each

compartmentalized activity or task must be determined.

 Time allocation: Each task to be scheduled must be allocated

some number of work units.

 Effort validation: Every project has a defined number of

staff members.

 Defined responsibilities: Every task that is scheduled should

be assigned to a specific team member.

 Defined outcomes: Every task that is scheduled should have

a defined outcome.

Correct listing

– 2M,

explanation –

2M

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 Defined milestones: Every task or group of tasks should be

associated with a project milestone. A milestone is

accomplished when one or more work products has been

reviewed for quality.

3. Attempt any THREE of the following: 12 M

 a Prescriptive process model and agile process model. 4 M

 Ans Prescriptive process model agile process mode

Prescriptive process models

stress detailed definition,

identification, and application

of process activates and tasks.

Agile process models

emphasize project “agility”

and follow a set of principles

that lead to a more informal

approach to software process.

A prescriptive model also

describes how each of these

elements are related to one

another.

Agile methods note that not

only do the software

requirements change, but so do

team members, the technology

being used.

It is Process oriented. It is people oriented.

It follows Life cycle model

(waterfall, spiral) development

model.

It follows Iterative and

Incremental development

model.

Documentation required is to

be comprehensive and

constant.

Documentation required is to

be minimal and evolving.

Predictive planning is required Adaptive planning is required.

Customers role is important. Customers role is critical.

Formal communication is

required.

Informal communication is

required.

To maintain quality heavy

planning and strict control with

late heavy testing is required.

To maintain quality continuous

control of requirements and

1 M for each

Difference

,Any Four

Difference

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

development with continuous

testing is required.

 b Describe any four principles of communication for software

engineering :

4 M

 Ans Principle 1 Listen:

 Try to focus on the speaker‘s words, rather than formulating your

response to those words.

 Ask for clarification if something is unclear, but avoid constant

interruptions.

 Never become contentious in your words or actions (e.g., rolling

your eyes or shaking your head) as a person is talking.

Principle 2 Prepare before you communicate:

 Spend the time to understand the problem before you meet with

others. If necessary, perform some research to understand

business domain.

 If you have responsibility for conducting a meeting, prepare an

agenda in advance of the meeting.

Principle 3 someone should facilitate the activity:

 Every communication meeting should have a leader (a facilitator)

 To keep the conversation moving in a productive direction,

 To mediate any conflict that does occur, and

 To ensure that other principles are followed.

Principle 4 Face-to-face communication is best:

 It usually works better when some other representation of the

relevant information is present.

 For example, a participant may create a drawing /document that

serve as a focus for discussion.

Principle 5 Take notes and document decisions:

1M for one

principle, Any

four princple

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 Someone participating in the communication should serve as

a recorder and write down all important points and

decisions.

Principle 6 Strive for collaboration:

 Collaboration occurs when the collective knowledge of

members of the team is used to describe product or system

functions or features.
 Each small collaboration builds trust among team members

and creates a common goal for the team.

Principle 7 Stay focused; modularize your discussion:

 The more people involved in any communication, the more likely

that discussion will bounce from one topic to the next.
 The facilitator should keep the conversation modular; leaving one

topic only after it has been resolved.

Principle 8 If something is unclear, draw a picture:

 Verbal communication goes only so far.

 A sketch or drawing can often provide clarity when words fail to

do the job.

Principle 9

(a) Once you agree to something, move on.

(b) If you can’t agree to something, move on.

(c) If a feature or function is unclear and cannot be clarified at the

moment,

move on.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 The people who participate in communication should recognize

that many topics require discussion and that moving on is

sometimes the best way to achieve communication agility.

Principle 10 Negotiation is not a contest or a game: It works best

when both parties win.

 There are many instances in which you and other stakeholders

must negotiate functions and features, priorities, and delivery

dates.

 If the team has collaborated well, all parties have a common goal.

Still, negotiation will demand compromise from all parties.

 c Draw proper labelled “LEVEL 1 Data Flow Diagram” (DFD) for

student attendance system

4 M

 Ans

 Level 0 Context Level

 Level 1 DFD student

1 M for level

0 and 3 M for

level 1 DFD

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 Level 1 for admin

 d State importance of “Function point “ and “lines of code” in

concerned with project estimation

4 M

 Ans Currently two metrics are popularly being used widely to estimate size:

lines of code (LOC) and function point (FP).

Lines of Code (LOC)

LOC is the simplest among all metrics available to estimate project size.

This metric is very popular because it is the simplest to use.

Using this metric, the project size is estimated by counting the number of

source instructions in the developed program. Obviously,

while counting the number of source instructions, lines used for

commenting the code and the header lines should be ignored.

Function Point (FP):

The conceptual idea behind the function point metric is that the size of a

software product is directly dependent on the number of different

Functions or features it supports. A software product supporting many

features would certainly be of larger size than a product with less number

2 M for

function point

and 2 M for

lines of code

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

of features. Each function when invoked reads some input data and

transforms it to the corresponding output data. For example, the issue book

feature (as shown in figure) of a Library Automation Software takes the

name of the book as input and displays its location and the number of copies

available. Thus, a computation of the number of input and the output data

values to a system gives some indication of the number of functions

supported by the system. Albrecht postulated that in addition to the number

of basic functions that a software performs, the size is also dependent on

the number of files and the number of interfaces.

4. Attempt any THREE of the following: 12 M

 a Describe Extreme programming with proper diagram 4 M

 Ans Extreme programming is a lightweight, efficient, low-risk, flexible,

predictable, scientific, and fun way to develop a software. eXtreme

Programming (XP) was conceived and developed to address the

specific needs of software development by small teams in the face of

vague and changing requirements. Extreme Programming is one of the

Agile software development methodologies. It provides values and

principles to guide the team behavior. The team is expected to self-

organize. Extreme Programming provides specific core practices

where- Each practice is simple and self-complete. Combination of

practices produces more complex and emergent behavior.

Extreme Programming is based on the following values-

 Communication

 Simplicity

 Feedback

 Courage

 Respect

1 M for

Diagram and 3

M for

explanation

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Extreme Programming involves-

 Writing unit tests before programming and keeping all of the tests

running at all times. The unit tests are automated and eliminates

defects early, thus reducing the costs.

 Starting with a simple design just enough to code the features at hand

and redesigning when required.

 Programming in pairs (called pair programming), with two

programmers at one screen, taking turns to use the keyboard. While

one of them is at the keyboard, the other constantly reviews and

provides inputs.

 Integrating and testing the whole system several times a day.

 Putting a minimal working system into the production quickly and

upgrading it whenever required.

 Keeping the customer involved all the time and obtaining constant

feedback. Iterating facilitates the accommodating changes as the

software evolves with the changing requirements.

Extreme Programming solves the following problems often faced in

the software development projects-

 Slipped schedules: Short and achievable development cycles ensure

timely deliveries.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 Cancelled projects: Focus on continuous customer involvement

ensures transparency with the customer and immediate resolution of

any issues.

 Costs incurred in changes: Extensive and ongoing testing makes sure

the changes do not break the existing functionality. A running working

system always ensures sufficient time for accommodating changes

such that the current operations are not affected.

 Production and post-delivery defects: Emphasis is on the unit tests to

detect and fix the defects early.

 Misunderstanding the business and/or domain: Making the customer

a part of the team ensures constant communication and clarifications.

 Business changes: Changes are considered to be inevitable and are

accommodated at any point of time.

 Staff turnover: Intensive team collaboration ensures enthusiasm and

good will. Cohesion of multi-disciplines fosters the team spirit

Extreme Programming takes the effective principles and practices to

extreme levels.

 Extreme Programming

 Code reviews are effective as the code is reviewed all the time.

 Testing is effective as there is continuous regression and testing.

 Design is effective as everybody needs to do refactoring daily.

 Integration testing is important as integrate and test several times a

day.

 Short iterations are effective as the planning game for release

planning and iteration planning.

 b List and explain any four principles of “Core Principles” of

Software Engineering.

4 M

 Ans The First Principle: The Reason It All Exists

1 M for one

principle and

explanation

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 A software system exists for one reason: to provide value to its

users. All decisions should be made with this in mind.

 Before specifying a system requirement, system functionality,

before determining the hardware platforms, first determine,

whether it adds value to the system.

The Second Principle: KISS (Keep It Simple, Stupid!)

 All design should be as simple as possible, but no simpler. This

facilitates having a more easily understood and easily maintained

system.
 It doesn’t mean that features should be discarded in the name of

simplicity.

 Simple also does not mean “quick and dirty.” In fact, it often

takes a lot of thought and work over multiple iterations to

simplify.
The Third Principle: Maintain the Vision

 A clear vision is essential to the success of a software project.

 If you make compromise in the architectural vision of a software

system, it will weaken and will eventually break even the well-

designed systems.

 Having a powerful architect who can hold the vision helps to

ensure a very successful software project.
The Fourth Principle: What You Produce, Others Will Consume

 Always specify, design, and implement by keeping in mind that

someone else will have to understand what you are doing.
 The audience for any product of software development is

potentially large.

 Design (make design), keeping the implementers (programmers)

in mind. Code (program) with concern for those who will

maintain and extend the system.
 Someone may have to debug the code you write, and that makes

them a user of your code.

The Fifth Principle: Be Open to the Future

 A system with a long lifetime has more value.

 True “industrial-strength” software systems must last for longer.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 To do this successfully, these systems must be ready to adapt

changes.

 Always ask “what if,” and prepare for all possible answers by

creating systems that solve the general problem.

The Sixth Principle: Plan Ahead for Reuse

 Reuse saves time and effort.

 The reuse of code and designs has a major benefit of using

object-oriented technologies.

 Planning ahead for reuse reduces the cost and increases the value

of both the reusable components and the systems into which they

are incorporated.

The Seventh principle: Think!

 Placing clear, complete thought before action almost always

produces better results.

 When you think about something, you are more likely to do it

right. You also gain knowledge about how to do it right again.
 If you do think about something and still do it wrong, it becomes

a valuable experience.

 Applying the first six principles requires intense thought, for

which the potential rewards are enormous.

 c Explain RMMM plan with example . 4 M

 Ans
A risk management plan or plan risk management is a document that

a prepares to foresee risks, estimate impacts, and define responses to

risks. It also contains a risk matrix.

A risk is "an uncertain event or condition that, if it occurs, has a positive

or negative effect on a project's objectives." Risk is inherent with

any and project manager should assess risks continually and develop

plans to address them. The risk management plan contains an analysis of

likely risks with both high and low impact, as well as mitigation

strategies to help the project avoid being derailed should common

problems arise. Risk management plans should be periodically reviewed

by the project team to avoid having the analysis become stale and not

reflective of actual potential project risks.

Most critically, risk management plans include a risk strategy.

There are two characteristics of risk i.e. uncertainty and loss.

Risk Mitigation, Monitoring and Management (RMMM)

1 M for

introduction to

risk and 3 M

for RMMM

plan example

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Risk analysis support the project team in constructing a strategy to deal

with risks.

There are three important issues considered in developing an

effective strategy:

 Risk avoidance or mitigation - It is the primary strategy which is

fulfilled through a plan.

 Risk monitoring - The project manager monitors the factors and gives

an indication whether the risk is becoming more or less.

 Risk management and planning - It assumes that the mitigation effort

failed and the risk is a reality.

RMMM PlanIt is a part of the software development plan or a separate

document.

 The RMMM plan documents all work executed as a part of risk analysis

and used by the project manager as a part of the overall project plan.

 The risk mitigation and monitoring starts after the project is started and

the documentation of RMMM is completed.

Risk :Computer Crash

Mitigation :

The cost associated with a computer crash resulting in a loss of data is

crucial. A computer crash itself is not crucial, but rather the loss of data.

A loss of data will result in not being able to deliver the product to the

customer. This will result in a not receiving a letter of acceptance from

the customer. Without the letter of acceptance, the group will receive a

failing grade for the course. As a result the organization is taking steps to

make multiple backup copies of the software in development and all

documentation associated with it, in multiple locations. ·

Monitoring :

When working on the product or documentation, the staff member

should always be aware of the stability of the computing environment

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

they’re working in. Any changes in the stability of the environment

should be recognized and taken seriously. ·

Management :

The lack of a stable-computing environment is extremely hazardous to a

software development team. In the event that the computing environment

is found unstable, the development team should cease work on that

system until the environment is made stable again, or should move to a

system that is stable and continue working there.

 d Explain any one project cost estimation approach. 4 M

 Ans (i) Heuristic

Heuristic techniques assume that the relationships among the

different project parameters can be modeled using suitable

mathematical expressions. Once the basic (independent)

parameters are known, the other (dependent) parameters can

be easily determined by substituting the value of the basic

parameters in the mathematical expression. Different

heuristic estimation models can be divided into the following

Any one

approach -

Explanation 4

M

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

two classes: single variable model and the multi variable

model.

Single variable estimation models provide a means to

estimate the desired characteristics of a problem, using some

previously estimated basic (independent) characteristic of the

software product such as its size. A single variable estimation

model takes the following form:

Estimated Parameter = c1 * e1
d
1

In the above expression, e is the characteristic of the software

which has already been estimated (independent variable).

Estimated Parameter is the dependent parameter to be

estimated. The dependent parameter to be estimated could be

effort, project duration, staff size, etc. c1 and d1 are

constants. The values of the constants c1 and d1 are usually

determined using data collected from past projects (historical

data). The basic COCOMO model is an example of single

variable cost estimation model.

A multivariable cost estimation model takes the following

form:

Estimated Resource = c1 * e1
d
1 + c 2 * e2

d
2 + ...

Where e1, e2, … are the basic (independent) characteristics

of the software already estimated, and c1, c2, d1, d2, … are

constants.

(ii) Analytical

Halstead’s Software Science – An Analytical Technique
Halstead’s software science is an analytical technique to

measure size, development effort, and development cost of

software products. Halstead used a few primitive program

parameters to develop the expressions for over all program

length, potential minimum value, actual volume, effort, and

development time.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Example:

Let us consider the following C program:
main()

{

int a, b, c, avg;

scanf(“%d %d %d”, &a, &b, &c);

avg = (a+b+c)/3;

printf(“avg = %d”, avg);

}

The unique operators are:

main,(),{},int,scanf,&,“,”,“;”,=,+,/, printf

The unique operands are:

a, b, c, &a, &b, &c, a+b+c, avg, 3, “%d %d %d”, “avg = %d”

Therefore,

n1 = 12, n2 = 11

Estimated Length = (12*log12 + 11*log11)

= (12*3.58 + 11*3.45)

= (43+38) = 81

Volume = Length*log(23)

= 81*4.52

= 366

 e Draw time chart for Libraray management system System (5

days a week). Consider broad phases of SDLC.

4 M

 Ans

 Week 1 Week 2 Week 3

D
1

D
2

D
3

D
4

D
5

D
1

D
2

D
3

D
4

D
5

D
1

D
2

D
3

D
4

D
5

Ananlysis

Design

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Coding

Testing

Deployme

nt

Maintena

nce

5 Attempt any TWO of the following: 12 M

 a Enlist requirement Gathering and Analysis for web based project

for registering candidates for contest

6 M

 Ans Requirement gathering includes suggestions and ideas for ways to best

capture the different types of requirement (functional, system,

technical, etc.) during the gathering process.

1. Functional requirements

The functional requirements are the requirements that will enable

solving the real world problem. The web based project must be able

to register the candidates for contest.

2. Non-functional requirements

These requirements aim at providing support, security and facilitate

user interaction segment of the website.

 The project must enable the candidates to safely enter their

passwords and other biometric information.

 There must be no repetition in registration of candidates i.e the

candidates must be registered only once.

3. Business requirements: They are high-level requirements that

are taken from the business case from the projects.

For eg:-

6M – 1M for 1

point

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Qualifying criteria Allowed/Disallowed

Indian Nationality Registration Allowed

Age>18 Allowed

No criminal record Allowed

4. Architectural and Design requirements: These requirements

are more detailed than business requirements. It determines the

overall design required to implement the business requirement.

 The web based project must be supported by different

operating systems , PC and mobile compatibility etc.

 The hardware must be integrated so as to accept the

fingerprint details of a candidate and register him in the

system.

 The database of the project must be updated.

5. System and Integration requirements: At the lowest level, we

have system and integration requirements. It is detailed

description of each and every requirement. It can be in form of

user stories which is really describing everyday business

language. The requirements are in abundant details so that

developers can begin coding.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

6. Documenting the requirement using traceability matrix

A Traceability Matrix is a document that co-relates any two-

baseline documents that require a many-to-many relationship to

check the completeness of the relationship.It is used to track the

requirements and to check the current project requirements are

met.

Req no Description Test case ID Status

1 Login TC1 TC1 Pass

2 Feed in

biometric

details

TC2 TC2 Pass

 b Differentiate between White box and Black Box Testing. 6 M

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 Ans Sr

.n

o

White box testing Black Box Testing

1 The tester needs to have

the knowledge of internal

code or program.

This technique is used to test

the software without the

knowledge of internal code

or program.

2 It aims at testing the

structure of the item being

tested.

 It aims at testing the

functionality of the

software.

3 It is also called structural

testing, clear box testing,

code-based testing, or

glass box testing.

It also knowns as data-

driven, box testing, data-,

and functional testing.

4 Testing is best suited for a

lower level of testing like

Unit Testing, Integration

testing.

This type of testing is ideal

for higher levels of testing

like System Testing,

Acceptance testing.

5 Statement Coverage,

Branch coverage, and Path

coverage are White Box

testing technique.

Equivalence partitioning,

Boundary value analysis are

Black Box testing technique

6 Can be based on detailed

design documents.

Can be based on

Requirement specification

document.

6M- 1M for

1point

 c Describe COCOMO II model for evaluating size of software project

with any three parameters in detail

6 M

 Ans COCOMO-II is the revised version of the original Cocomo

(Constructive Cost Model) and is developed at University of Southern

California. It is the model that allows one to estimate the cost, effort

and schedule when planning a new software development activity.

3M for

Description,

3M for

parameters

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 COCOMO II provides the following three-stage series of models for

estimation of Application Generator, System Integration, and

Infrastructure software projects:

End User

Programming

Application

Generators and

composition aids

Infrastructure

Application

Composition

System

Integration

 The Application Composition Model

This model involves prototyping efforts to resolve potential high-

risk issues such as user interfaces, software/system interaction,

performance, or technology maturity. The costs of this type of

effort are best estimated by the Applications Composition model.

It is suitable for projects built with modern GUI-builder tools. It is

based on new Object Points.

 The Early Design Model

The Early Design model involves exploration of alternative

software/system architectures and concepts of operation. It uses a

small set of new Cost Drivers, and new estimating equations.

Based on Unadjusted Function Points or KSLOC.

 The Post-Architecture Model

The Post-Architecture model involves the actual development and

maintenance of a software product

Estimates

In COCOMO II effort is expressed as Person Months (PM). The inputs

are the Size of software development, a constant, A, and a scale factor, B.

The size is in units of thousands of source lines of code (KSLOC). The

constant, A, is used to capture the multiplicative effects on effort with

projects of increasing size.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

The parameters used in COCOMO II are described below:-

a. Person month- A person month is the amount of time one person

spends working on the software development project for one

month. The nominal effort for a given size project and expressed

as person months (PM) is given by Equation 1.

 PMnominal =A* (Size)B

Where

A- constant

B = 0.91 + 0.01 ∑(exponent driver ratings)

- B ranges from 0.91 to 1.23

- 5 drivers; 6 rating levels each

b. Maintenance size is the amount of project code that is change. It

is calculated as below:-

Size=[(BaseCodeSize) *MCF] *MAF

COCOMO II uses the reuse model for maintenance when the amount of

added or changed base source code is less than or equal to 20% or the new

code being developed. Base code is source code that already exists and is

being changed for use in the current project. For maintenance projects that

involve more than 20% change in the existing base code (relative to new

code being developed) COCOMO II uses maintenance size.

c. Maintenance Change Factor MCF

The percentage of change to the base code is called the Maintenance

Change Factor (MCF).

MCF= (SizeAdded +SizeModified)/BaseCodeSize

d. Maintenance effort (MAF)

COCOMO II instead used the Software Understanding (SU) and

Programmer Unfamiliarity (UNFM) factors from its reuse model to

model the effects of well or poorly structured/understandable

software on maintenance effort.

MAF=1+ (SU.01*UNFM)

6 Attempt any TWO of the following: 12 M

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 a Draw and explain Transition diagram from requirement model to

design model

6 M

 Ans Transition diagram from requirement model to design model

Software requirements, manifested by the data, functional, and

behavioural models, feed the design task. Using one of a number of design

methods, the design task produces a data design, an architectural design,

an interface design, and a component design. Each of the elements of the

analysis model provides information that is necessary to create the four

design models required for a complete specification of design.

Design is a meaningful engineering representation of something that is to

be built. It can be traced to a customer’s requirements and at the same time

assessed for quality against a set of predefined criteria for ―good‖ design.

In the software engineering context, design focuses on four major areas of

concern: data, architecture, interfaces, and components Design begins

with the requirements model.

The data design transforms the information domain model created during

analysis into the data structures that will be required to implement the

software. The data objects and relationships defined in the entity

relationship diagram and the detailed data content depicted in the data

dictionary provide

the basis for the data design activity. Part of data design may occur in

conjunction with the design of software architecture. More detailed data

design occurs as each software component is designed. The architectural

design defines the relationship between major structural elements of the

software, the design pattern that can be used to achieve the requirements

that have been defined for the system, and the constraints that affect the

way in which architectural design patterns can be applied.

2M –diiagram,

4M –

explanation

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

The architectural design representation the framework of a computer-

based system can be derived from the system specification, the analysis

model, and the interaction of subsystems defined within the analysis

model. The interface design describes how the software communicates

within itself, with systems that interoperate with it, and with humans who

use it. An interface implies a flow

of information (e.g., data and/or control) and a specific type of behavior.

Therefore, data and control flow diagrams provide much of the

information required for interface design. The component-level design

transforms structural elements of the software architecture into a

procedural description of software components. Information obtained

from the PSPEC, CSPEC, and STD serve as the basis for component

design.

 b Describe CMMI. Give significance of each level. 6 M

 Ans The Capability Maturity Model Integration (CMMI), a comprehensive

process meta-model that is predicated on a set of system and software

engineering capabilities that should be present as organizations reach

different levels of process capability and maturity. The CMMI represents

a process meta-model in two different ways: (1) Continuous model and

(2) Staged model. The continuous CMMI meta-model describes a process

in two dimensions. Each process area (e.g. project planning or

requirements management) is formally assessed against specific goals and

practices and is rated according to the following capability levels:

Level 1: Initial. The software process is characterized as ad hoc and

occasionally even chaotic. Few processes are defined, and success

depends on individual effort.

1M- diagram ,

5M- 5 points

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Level 2: Repeatable. Basic project management processes are established

to track cost, schedule, and functionality. The necessary process discipline

is in place to repeat earlier successes on projects with similar applications.

Level 3: Defined. The software process for both management and

engineering activities is documented, standardized, and integrated into an

organization wide software process. All projects use a documented and

approved version of the organization's process for developing and

supporting software. This level includes all characteristics defined for

level 2

Level 4: Managed. Detailed measures of the software process and

product quality are collected. Both the software process and products are

quantitatively understood and controlled using detailed measures. This

level includes all characteristics defined for level 3

Level 5: Optimizing. Continuous process improvement is enabled by

quantitative feedback from the process and from testing innovative ideas

and technologies. This level includes all characteristics defined for level

4.

 c Identify and enlist requirement for given modules of employee

management software

6 M

 Ans i. Employee detail

ii. Employee salary

iii.Employee performance

This is with perspective of employee management software.

Requirements for following

modules will be as

i. Employee details

a. Getting information about the customer

b. Updation of employee details (department, change of address,

emp_code etc)

c. Assignment of tasks , duties and responsibilities.

d. Recording of employee attendance.

ii. Employee salary

a. Salary calculation

2 M for

employee

detail, salary,

performance

each

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

b. Allowances, special bonus calculation and approval

c. Tax statement/certificate

d. Apply loan/approvals

iii. Performance

a. Recording annual performance

b. Details about parameters for performance appraisal

c. Analysis performance and determining hike in payment.

