

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

WINTER – 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Subject Code:

22634

Model Answer

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q.	Sub	Answers	Marki
No.	Q.		ng
	N.		Schem
			e
1	(A)	Attempt any <u>FIVE</u> of the following:	10-
			Total
			Marks
	(a)	Define Bit rate and Baud rate	2M
	Ans:	bit rate : It is defined as the number of bits transmitted per second.	1 M
		baud rate : It is defined as the number of signal units per second.	each

WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

(b)	Classify networks on the basis of transmission technologies.	2M
Ans:	Classification of networks on the basis of transmission technologies	1M
	1. Broadcast Network	Each
	2. Point-to-Point Network	
(c)	State the function of transport layer in TCP/IP protocol suite	2M
Ans:	Function of transport layer in TCP/ IP protocol suite	Any
	1 Dreases to presses delivery	two
	 Process to process delivery End-to-end Connection between hosts 	valid
	3. Multiplexing and Demultiplexing	funct
	4. Congestion Control	on 1N
	5. Data integrity and Error correction	_
	6. Flow control	each
(d)	Name the layer of the OSI model that is responsible for moving of data in and out of	2M
(d)		2M
	Name the layer of the OSI model that is responsible for moving of data in and out of	
	Name the layer of the OSI model that is responsible for moving of data in and out of physical link in network. State its functions. Physical layer is responsible for moving of data in and out of physical link in network.	
	Name the layer of the OSI model that is responsible for moving of data in and out of physical link in network. State its functions.	Name
	Name the layer of the OSI model that is responsible for moving of data in and out of physical link in network. State its functions. Physical layer is responsible for moving of data in and out of physical link in network. Function of Physical layer 1. It defines the physical characteristics and functions of the physical devices and interfaces	Name
	Name the layer of the OSI model that is responsible for moving of data in and out of physical link in network. State its functions. Physical layer is responsible for moving of data in and out of physical link in network. Function of Physical layer 1. It defines the physical characteristics and functions of the physical devices and interfaces so that transmission can occur.	Name of layer 1M
	Name the layer of the OSI model that is responsible for moving of data in and out of physical link in network. State its functions. Physical layer is responsible for moving of data in and out of physical link in network. Function of Physical layer 1. It defines the physical characteristics and functions of the physical devices and interfaces so that transmission can occur. 2. It defines the procedure of encoding of the bits.	Name of layer
	Name the layer of the OSI model that is responsible for moving of data in and out of physical link in network. State its functions. Physical layer is responsible for moving of data in and out of physical link in network. Function of Physical layer 1. It defines the physical characteristics and functions of the physical devices and interfaces so that transmission can occur. 2. It defines the procedure of encoding of the bits. 3. It states the data transmission rate and the duration of a bit.	Name of layer 1M
	 Name the layer of the OSI model that is responsible for moving of data in and out of physical link in network. State its functions. Physical layer is responsible for moving of data in and out of physical link in network. Function of Physical layer It defines the physical characteristics and functions of the physical devices and interfaces so that transmission can occur. It defines the procedure of encoding of the bits. It states the data transmission rate and the duration of a bit. It defines the topology. 	Name of layer 1M Any
	Name the layer of the OSI model that is responsible for moving of data in and out of physical link in network. State its functions. Physical layer is responsible for moving of data in and out of physical link in network. Function of Physical layer 1. It defines the physical characteristics and functions of the physical devices and interfaces so that transmission can occur. 2. It defines the procedure of encoding of the bits. 3. It states the data transmission rate and the duration of a bit.	Name of layer 1M Any one valid
	 Name the layer of the OSI model that is responsible for moving of data in and out of physical link in network. State its functions. Physical layer is responsible for moving of data in and out of physical link in network. Function of Physical layer It defines the physical characteristics and functions of the physical devices and interfaces so that transmission can occur. It defines the procedure of encoding of the bits. It states the data transmission rate and the duration of a bit. It defines the topology. 	Name of layer 1M Any one valid funct
(d) Ans:	 Name the layer of the OSI model that is responsible for moving of data in and out of physical link in network. State its functions. Physical layer is responsible for moving of data in and out of physical link in network. Function of Physical layer It defines the physical characteristics and functions of the physical devices and interfaces so that transmission can occur. It defines the procedure of encoding of the bits. It states the data transmission rate and the duration of a bit. It defines the topology. 	Name of layer 1M Any one

WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Ans:	Application of infrared waves	Ang
	1. Remote Control	app
	2. Optical Fibres	ati
	3. Thermal Imaging Cameras	
	4. Infrared Cookers	1M
	5. Electric Heaters	eac
	6. Infrared Lamps	
f)	State the application of firewall.	2M
Ans:	Application of firewall	An
	• A fire wall is a network security device, either hardware or software-based, which	one
	monitors all incoming and out going traffic and based on a defined set of security rules it accepts ,rejects or drops that specific traffic.	Va
	• A fire wall establishes a barrier between secured internal networks and outside untrusted	apj
	network, such as the Internet	ati
	• A fire wall is a part of computer system or network that is designed to block	poi
	unauthorized access while permitting authorized communication	-
	 A firewall is placed at the entry/exit point of the network 	2M
	• A mewan is placed at the entry/exit point of the network	eac
g)	State the need for IPv6.	2M
Ans:	Need for IPv6	2M
	The Internet has experienced a phenomenal increase of devices accessing the Internet.	
	Because of this increase, IPv4 addresses are running out.Traditional model of classful	
	addressing does not allow the address space to be used to its maximum potential. The solution	
	is IPv6 which can accommodate the increased demand by providing a much larger	
	address space IPv6 has 128-bit address space or 4 times more address bits compared to	
	IPv4's 32-bit address space. This large address space will provide enough address	
	space for many decades to come.	
		1

WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Subject Code: 22634

Model Answer

•	Sub	Answers	Marking
0.	Q.		Scheme
	N.		
		Attempt any <u>THREE</u> of the following:	12-
			Total
			Marks
	a)	Name the components of data communication system . State the function of each	4M
	<i>a)</i>		
		component.	
	Ans:	Following are the building blocks (components) of Data Communication System:	2M
		1. Message: The message is the information (data) to be communicated. Popular forms	Explana
		of information include text, numbers, pictures, audio, and video.	tion
		2. Sender : The sender is the device that sends the data message. It can be a computer, workstation, telephone handset, video camera, and so on.	tion
		3. Receiver : The receiver is the device that receives the message. It can be a computer, workstation, telephone handset, television, etc	
		4. Transmission medium : the transmission medium is the physical path by which a message travels from sender to receiver. Some examples of transmission media include twisted-pair wire, coaxial cable, fibre-optic cable, and radio waves.	
		5. Protocol: A protocol is a set of rules that governs data communication.	
	b)	Explain the terms Synchronous, and Asynchronous transmission of data with a neat	4 M
		diagram	
	Ans:	Synchronous Data Transmission:	2M
			each for
		Direction of flow	Synchro
		Frame Frame Frame	nous &
		Sender 110111 1111011 11110110 11110111 11110 11110 Receiver	
			Asynch
			ronous

WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

```
Subject Code: 22634
```

Model Answer

[]			D /
		Fig. : Synchronous Data Transmission	Data
		• Synchronous data transmission is a data transfer method in which is a continuous	Transm
		stream of data signals accompanied by timing signals.	ission
		• Synchronous transmission needs synchronization between transmitter and receiver in	with
		order to allow communication between the two. The transmitter and receiver share	Diagra
		a common clock pulse so as to have synchronization in communication. This means data will be transmitted between the transmitter and receiver only after a constant time interval.	m
		• It allows the transmission of data in the form of frames or blocks. Thus, a huge data amount can be transmitted between transmitter and receiver once the clock pulse is sent	
		Asynchronous Data Transmission:	
		Direction of flow Stop bit Data 1 1 1 1 1 1 0 1 1 0 Sender 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 Gaps between data units	
		Fig.: Asynchronous Data Transmission	
		• Asynchronous transmission is a type of serial transmission that follows a non- synchronized form of communication. Thus start and stop bits are required in order to intimate the receiver about the beginning and end of the data stream.	
		• It does not use a clock to synchronize data between the source and destination.	
		• This transmission method sends one character time. In this method, before the transmission process begins, each character sends the start bit. After sending the character, it also sends the stop bit Thus it is also known as start stop transmission	
	c)	State the functions performed by the Network layer and application layer in a TCP/I	4 M
	-,	protocol.	
	Ans:	Functions of Network Layer:	2M
		(i) Subnet Traffic Control: Network layer routers (network layer intermediate systems) can	each for
		instruct a sending station to "throttle back" its frame transmission when the router's buffer fills	Functio

WINTER – 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Subject Code: 22634

Model Answer

up.	ns o
(ii) Logical-physical Address Mapping: It translates logical addresses, or names, into physical addresses.	Net
	k La
(iii) Subnet Usage Accounting: It has accounting functions to keep track of frames forwarded by subnet intermediate systems.	& App
(iv) Internetworking: One of the main responsibilities of network layer is to provide internetworking between different networks. It provides logical connection between different	tion
types of network. It is because of this layer, we can combine various different networks to form a bigger network.	Lay
(v) Logical Addressing: Large number of different networks can be combined together to from bigger networks or internetwork. In order to identify each device on internetwork uniquely, network layer defines an addressing scheme. Such an address distinguishes each device uniquely and universally.	
(vi) Routing: When independent networks or links are combined together to create internet works, multiple routes are possible from source machine to destination machine. The network layer protocols determine which route or path is best from source to destination. This function of network layer is known as routing. Routes frames among networks.	
(vii) Packetizing: The network layer receives the data from the upper layers and creates its own packets by encapsulating these packets. The process is known as packetizing. This packetizing in done by Internet Protocol (IP) that defines its own packet format.	
(viii) Fragmentation: Fragmentation means dividing the larger packets into small fragments. The maximum size for a transportable packet in defined by physical layer protocol. For this, network layer divides the large packets into fragments so that they can be easily sent on the physical medium. If it determines that a downstream router's maximum transmission unit (MTU) size is less than the frame size, a router can fragment a frame for transmission and reassembly at the destination station.	
Functions Application Layer:	
(i) Network Virtual Terminal: It allows a user to log on to a remote host.	
(ii) File Transfer, Access and Management (FTAM): This application allows a user to access files in remote computer (to make changes or read data), to retrieve files from a remote computer, and to manage or control files in a remote computer.	

WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Subject Code: 22634

Model Answer

	 (iv) Remote Logins: This layer allows logging into a host which is remote. (v) Network Abstraction: Provides an abstraction of the underlying network to an end user and an amplication. 	
	 and an application. (vi) Directory Services: This application provides distributed database sources and access for global information about various objects and services. 	
d)	Explain checksum error detection mechanism with a suitable example.	4 M
Ans:	Checksum:	2M
	1.Checksum is an error-detecting technique in data communication that can be applied to a	Expla
	message of any length. In the Internet, this technique is mostly used at the network and	ation
	transport layer rather than the data link layer.	and 2M
	2. In checksum error detection scheme, the data is divided into k segments each of m bits. In the	
	sender's end the segments are added using 1's complement arithmetic to get the sum. The sum is complemented to get the checksum.	Exam
	3. The checksum segment is sent along with the data segments. At the receiver's end, all	le
	1 0	le
	3.The checksum segment is sent along with the data segments. At the receiver's end, all received segments are added using 1's complement arithmetic to get the sum. The sum is complemented. If the result is zero, the received data is accepted; otherwise discarded. Original Data 10011001 11100010 10000100	le
	3. The checksum segment is sent along with the data segments. At the receiver's end, all received segments are added using 1's complement arithmetic to get the sum. The sum is complemented. If the result is zero, the received data is accepted; otherwise discarded. Original Data $10011001 11100010 10000100$ $1 2 3 4$ $k=4, m=8$	le
	3. The checksum segment is sent along with the data segments. At the receiver's end, all received segments are added using 1's complement arithmetic to get the sum. The sum is complemented. If the result is zero, the received data is accepted; otherwise discarded. Original Data 10011001 11100010 00100100 10000100 1 2 3 4 k=4, m=8 Receiver 1 10011001	le
	3.The checksum segment is sent along with the data segments. At the receiver's end, all received segments are added using 1's complement arithmetic to get the sum. The sum is complemented. If the result is zero, the received data is accepted; otherwise discarded. Original Data 10011001 11100010 00100100 10000100 k=4, m=8 Receiver	le
	3.The checksum segment is sent along with the data segments. At the receiver's end, all received segments are added using 1's complement arithmetic to get the sum. The sum is complemented. If the result is zero, the received data is accepted; otherwise discarded. Original Data 10011001 1110001 00100100 10000100 1 2 3 4 K=4, m=8 Receiver 1 10011001 2 11100010 1 0011001 1 10011001 1 10011001	le
	3. The checksum segment is sent along with the data segments. At the receiver's end, all received segments are added using 1's complement arithmetic to get the sum. The sum is complemented. If the result is zero, the received data is accepted; otherwise discarded. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	le
	3. The checksum segment is sent along with the data segments. At the receiver's end, all received segments are added using 1's complement arithmetic to get the sum. The sum is complemented. If the result is zero, the received data is accepted; otherwise discarded. $\begin{array}{r} \hline 10011001 \\ 11000100 \\ 1 \\ k=4, m=8 \end{array}$ $\begin{array}{r} \hline Receiver \\ \hline 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1$	le
	3. The checksum segment is sent along with the data segments. At the receiver's end, all received segments are added using 1's complement arithmetic to get the sum. The sum is complemented. If the result is zero, the received data is accepted; otherwise discarded. Original Data $ \begin{array}{c} 10011001 & 11100010 & 00100100 \\ \hline 1 & 0011001 & 11100010 \\ \hline 1 & 10011001 & 2 & 3 & 4 \\ \hline k=4, m=8 & \hline Receiver & 1 \\ \hline 1 & 10011001 & 2 & 11100010 \\ \hline 1 & 10011001 & 2 & 11100010 \\ \hline 1 & 10011001 & 2 & 11100010 \\ \hline 1 & 100111001 & 2 & 11100010 \\ \hline 1 & 100111001 & 2 & 011111011 \\ \hline 0 & 11111011 & 0 & 111100 \\ \hline 0 & 011111011 & 0 & 010000 \\ \hline 3 & 00100100 & 4 & 10000000 \end{array} $	le
	3. The checksum segment is sent along with the data segments. At the receiver's end, all received segments are added using 1's complement arithmetic to get the sum. The sum is complemented. If the result is zero, the received data is accepted; otherwise discarded. $\begin{array}{c} \hline 10011001 & 11100010 & 00100100 \\ \hline 1 & 2 & 3 & 4 \\ \hline \\$	le

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Computer Networking and Data Comm.

Q. No.	Sub Q. N.	Answers	Marking Scheme
	a)	Name the layer of the OSI model that perform the following functions	4M
		 i) Bitrate control ii) Framing iii) Logical Addressing iv) Encryption / Decryption 	
	Ans:	 i) Bitrate control : Physical layer ii) Framing : data link layer iii) Logical Addressing : network layer iv) Encryption / Decryption : presentation layer 	1M For each correct answer
	b)	Calculate the CRC for the frame of data to be transmitted in 100100 and the generator polynomial is $x^3 + x^2 + 1$. Generate the Codeword for the transmitted frame.	4M
		Data to be transmitted = 100100 Divisor = $x^3 + x^2 + 0x + 1 = 1101$ so $n = 4$ no: of zeros append to Data is $n - 4 = 3$ divident = 100100000 (1101) 10010000 (9)1101000000000000000000000000000000000	Correc t divisor 1M & Correc t calcula tion of CRC code word is 3M

WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

c)	On whi	ich layer of the O.S.I. mo	odel do the following devices work.		4M
	i)	Bridge			
	ii)	Routes			
	iii)	Gateway			
	iv)	Hub			
Ans:	i)	Bridge: A bridge oper	ates at the data link layer.		1M
	ii)	Routes : The router is	mainly a Network Layer device.		For
	iii)	Gateway : it can opera	ate at any network layer		each
	iv)	Hub : A hub operates	at the physical layer		
d) Ans:				s of classful addressing.	4M
Ans:	Differe Sr. No.	nce between Classful Add Parameter	dressing and Classless Addressing Classful Addressing	Classless Addressing	Any (valid differ nces
Ans:	Sr.				Any valid differ nces 3M 1M fo any one
Ans:	Sr. No.	Parameter	Classful Addressing In Classful addressing IP addresses are allocated	Classless Addressing Classless addressing came to replace the classful addressing and to handle the issue of rapid exhaustion of IP	Any valid differ nces 3M 1M f any

WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Subject Code: 22634

Model Answer

			1
4.	VLSM	It does not support the Variable Length Subnet Mask (VLSM).	It supports the Variable Length Subnet Mask (VLSM).
5.	Bandwidth	Classful addressing requires more bandwidth. As a result, it becomes slower and more expensive as compared to classless addressing.	It requires less bandwidth. Thus, fast an less expensive as compared to classful addressing.
6.	CIDR	It does not support Classless Inter-Domain Routing (CIDR).	It supports Classless Inter-Domain Routing (CIDR).
7.	Updates	Regular or periodic updates	Triggered Updates
8.	Troubleshooting and Problem detection	Troubleshooting and problem detection are easy than classless addressing because of the division of network, host and subnet parts in the address.	It is not as easy compare to classful addressing.
9.	Division of Address	NetworkHostSubnet	HostSubnet

Disadvantage of Classful Addressing:

- 1. Class A with a mask of 255.0.0.0 can support 128 Network, 16,777,216 addresses per network and a total of 2,147,483,648 addresses.
- 2. Class B with a mask of 255.255.0.0 can support 16,384 Network, 65,536 addresses per network and a total of 1,073,741,824 addresses.
- 3. Class C with a mask of 255.255.255.0 can support 2,097,152 Network, 256 addresses per network and a total of 536,870,912 addresses.

WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Q. No.	Sub Q. N.	Answers	Marking Scheme
4		Attempt any THREE of the following:	12- Total Marks
	(a)	Explain the principle of working of TDM with suitable diagram	4M
		 In Time-division multiplexing all signals operate with same frequency at different times. TDM is the digital multiplexing technique. In TDM, the channel/link is not divided on the basis of frequency but on the basis of time. Total time available in the channel is divided between several users. 	Diagra m and 2M Explan
	 basis of frequency but on the basis of time. Total time available in the channel is divided between several users. 3.Each user is allotted a particular a time interval called time slot or time slice during which th data is transmitted by that user. Thus each sending device takes control of entire bandwidth of the channel for fixed amount of time. In TDM the data rate capacity of the transmission medium should be greater than the data rate required by sending or receiving devices. 		2M
		4. In TDM all the signals to be transmitted are not transmitted simultaneously. Instead, they are transmitted one-by-one. Thus, each signal will be transmitted for a very short time. One cycle or frame is said to be complete when all the signals are transmitted once on the transmission channel.	
	5.The TDM system can be used to multiplex analog or digital signals, however it is more suitable for the digital signal multiplexing. The TDM signal in the form of frames is transmitted on the common communication medium.		
		$A_{3}A_{2}A_{1}$ $B_{3}B_{2}B_{1}$ X $C_{3}B_{3}A_{3}C_{2}B_{2}A_{2}C_{1}B_{1}A_{1}$ $C_{3}C_{2}C_{1}$ $C_{3}C_{2}C_{1}$ $C_{3}C_{2}C_{1}C_{2}C_{1}$ $C_{3}C_{2}C_{2}C_{1}C_{2}C_{1}C_{2}C_{1}B_{1}A_{1}$ $C_{3}C_{3}C_{2}C_{2}C_{1}B_{1}A_{1}$ $C_{3}C_{3}C_{2}C_{2}C_{1}B_{1}A_{1}$ $C_{3}C_{3}C_{2}C_{2}C_{1}B_{1}A_{1}$ $C_{3}C_{3}C_{2}C_{2}C_{1}B_{1}A_{1}$ $C_{3}C_{3}C_{2}C_{2}C_{1}B_{1}A_{1}$	
		Fig.: Time Division Multiplexing (TDM)	

WINTER – 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Subject Code: 22634

Model Answer

(b)	Explain stop and wait protocol used in flow control.	4M
Ans:	 One bit sliding window uses Stop and Wait protocol for delivery of data frames. The sender and receiver's windows size is 1 and the frames are alternately numbered One bit sliding window uses Stop and Wait protocol Sender transmit a frame with sequence number and waits for acknowledgment from the receiver. Receiver send back an acknowledgement with sequence number. If sequence number of acknowledgement matches with sequence number of frame. Sender transmit the next frame. Else sender re-transmit the previous frame. Its bidirectional protocol.(full duplex communication) 	2M Diagra m & 2M Explan ation
	Normal Operation: In normal operation thesender sends a frame and waits for acknowledgement from receiver . The acknowledgement should be received before the timer for the frame expires. The sequence number of acknowledgement should match the sequence number of next frame to be transmitted. If it matches the next frame is transmitted otherwise previous frame is transmitted Lost or Damaged frame :. When the receiver receives a damaged frame it discards it which means the frame is lost . The receiver remains silent about the lost frame . After the timer expires for that frame the sender retransmits the same frame . Lost or Delayed acknowledgement: In case of lost or delayed acknowledgement after the timer for the frame expires the sender retransmits the frame . The receiver takes care of discarding duplicate copy	

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Computer Networking and Data Comm.

Subject Code: 22634

Ans:	Datagram Packet Switching:	2M
	In a datagram network, each packet is treated independently of all others.	Diagr
	Datagram switching is normally done at the network layer.	m
	Figure shows how the datagram approach is used to deliver four packets from station A to station X.	&2M
	The switches in a datagram network are traditionally referred to as routers.	Expla
	 In this example, all four packets (or datagrams) belong to the same message, may travel different paths to reach their destination. This is so because the links may be involved in carrying packets from other sources and do not have the necessary bandwidth available to carry all the packets from A to X. This approach can cause the datagrams of a transmission to arrive at their destination out of order with different delays between the packets. In most protocols, it is the responsibility of an upper-layer protocol to reorder the datagrams or ask for lost datagrams before passing them on to the application. The datagram networks are sometimes referred to as connectionless networks. The term connectionless here means that the switch (packet switch) does not keep information about the connection state. There are no setup or teardown phases. Datagrams can contain the full destination address rather than using some number There is no set up phase required for the datagram circuits. This means that no resources are consumed. If any fault or loss occurs on a communication line, the datagrams circuits are capable of compensating for it. 	ation
	Fig.: Datagram Packet Switching	

WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Subject Code: 22634

Model Answer

(d)	Explain the concept of FTP with neat diagram.	4M
Ans:	FTP (File Transfer Protocol) :FTP is a standard mechanism provided by the Internet for	2M
	copying a file from one host to the other It uses the services of TCP	Conce
	User Interface : Most operating systems provide user interface to to access the services	t & 2N
	of FTP. The interface prompts user for appropriate input	Archi
	Control Connection : The well known port 21 is used for control connection . It is	
	opened once and maintained during entire FTP session	cture
	Data Connection : The well known port 20 is used for data connection . The connection can be	and
	opened and closed multiple times.	Diagr
	The data connection in FTP means one of the following	m of
	1) A file can be copied from server to client under the supervision of RETR command	
	2) A file is transferred from client to server under the supervision of STOR command	FTP
	3) A list of directory or filename is sent to the client under the supervision of LIST command	
	For communication over data connection client must define the type of file, structure of data and transmission mode	
	Architecture of FTP:	
	User Interface Control Connection Control Ontrol Control Process TCP/IP Control Data Transfer Data Process Data Transfer Process Data Transfer Data Transfer Data Transfer Data Transfer Process Data Server	
(e)	Compare coaxial cable and twisted pair cable on the basis of- i) Bandwidth ii) Electromagnetic interference iii) Construction iv) applications	4M

WINTER – 2022 EXAMINATION

Model Answer

Subject Name: Computer Networking and Data Comm.

S: Pa	rametes	coaxial cable	Twisted pair cable
Bandwidth		Bandwidth is high which is 300 to 400 MHz.	Bandwidth is low which is 3 to 4 MHz.
Electromag interference		Less affected by EMI and noise.	Affected by EMI and noise.
Constructio	n	Outer jacket Foil shield Center conductor Dielectric medium	Insulator
application	S	1. The use of coaxial cable started in analog telephone networks where a single coaxial network could carry 10,000 voice signals.2. Later it was used in digital telephone networks where a single coaxial cable could carry digital data up to 600 Mbps.3. Most common use is in cable TV.4. Coaxial cabling is often used in heavy industrial environments where motors and generators 	 TP cables are used in telephone lines to provide voice and data channels. The line that connects subscribers to the central telephone office is most commonly UTP cable. The DSL lines that are used by the telephone companies to provide high data rate connections also use high bandwidth capability UTP cable. Local Area Network (LAN) also uses twisted-pair cable.

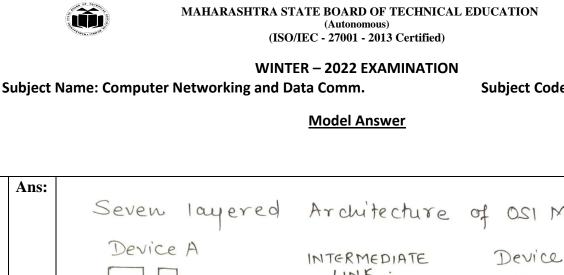
WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Subject Code: 22634

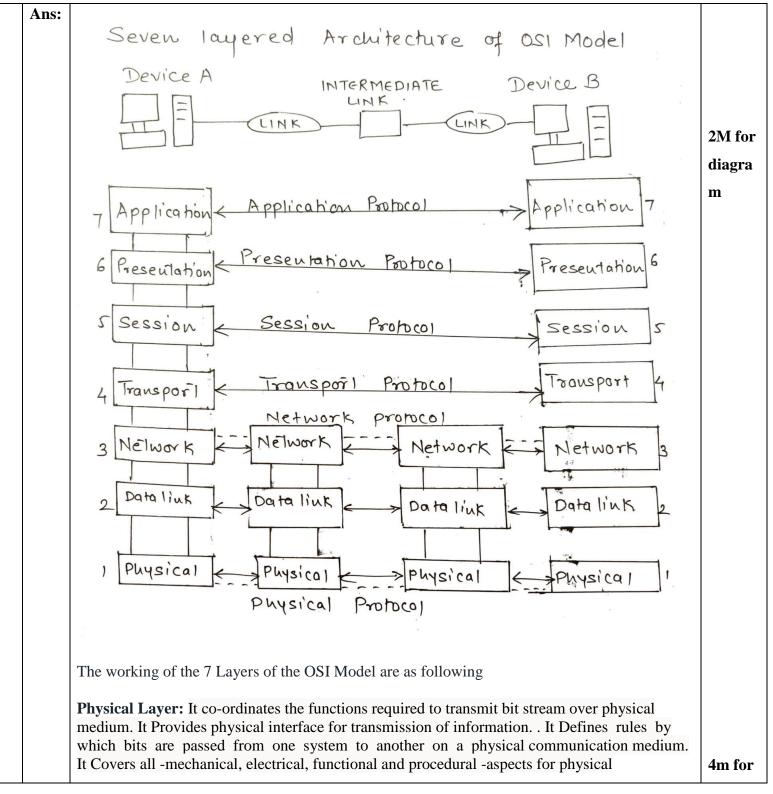
Model Answer

a) Draw a diagram and describe the following topologies stating their applications. 6M i) Hybrid 6M ii) Hybrid 80 Ans: Figure Illustrate the diagram for following topologies 3M Hybrid Topology • A hybrid topology is a kind of network topology that is a combination of two or more network topologies, such as Mesh topology, Bus topology, and Ring topology. 3M • Its usage and choice are dependent on its deployments and requirements like the performance of the desired network, and the number of computers, their locations • This topology presents a blend of characteristics of all basic types. In this type, whole Computer Network is divided into Network Segments. Each Network Segments connects with Network Backbone Image: Computer Research and the second and the	Q. No.	Sub Q. N.	Answers	Marking Scheme
i) Hybrid ii) Bus Ans: Figure Illustrate the diagram for following topologies 3M Hybrid Topology • A hybrid topology is a kind of network topology that is a combination of two or more network topologies, such as Mesh topology, Bus topology, and Ring topology. • Its usage and choice are dependent on its deployments and requirements like the performance of the desired network, and the number of computers, their locations • This topology presents a blend of characteristics of all basic types. In this type, whole Computer Network is divided into Network Segments. Each Network Segments connects with Network Backbone Its usage introduced into Network Segments. Each Network Segments connects with Network Backbone Its usage introduced into Network Segments. Each Network Segments connects with Network Backbone Its usage introduced into Network Segments. Each Network Segments. Each Network Segments is the performance into the performace into the performace into the performace in	5.		Attempt any <u>TWO</u> of the following:	12- Total Marks
 Hybrid Topology A hybrid topology is a kind of network topology that is a combination of two or more network topologies, such as Mesh topology, Bus topology, and Ring topology. Its usage and choice are dependent on its deployments and requirements like the performance of the desired network, and the number of computers, their locations This topology presents a blend of characteristics of all basic types. In this type, whole Computer Network is divided into Network Segments. Each Network Segments connects with Network Backbone 		a)	i) Hybrid	6M
		Ans:	 Hybrid Topology A hybrid topology is a kind of network topology that is a combination of two or more network topologies, such as Mesh topology, Bus topology, and Ring topology. Its usage and choice are dependent on its deployments and requirements like the performance of the desired network, and the number of computers, their locations This topology presents a blend of characteristics of all basic types. In this type, whole Computer Network is divided into Network Segments. Each Network Segments connects with Network Backbone 	3M Diagra m 1m explain ation


WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Subject Code: 22634


Model Answer

	Application of Hybrid Topology	1M
•	Automated Industry	13.7 6
•	Banks	1M fo
•	Multi National Offices	any 2
•	Educational Institute	applic
•	Research Organization	tion of
		each
	Bus Topology	topolo
•	Computers and peripherals are called nodes and are each connected to a single cable on which data can be sent.	y y
•	A bus network topology has a terminator on each end. These are needed to ensure that the network functions correctly.	
	Bus Topology Application	
•	A bus topology is used to connect two floors using a single line.	
•	A bus topology is used by an Ethernet network	
•	In this type of network topology, one computer works like a server whereas the other works as a client.	
•	The main function of the server is to exchange information between different client computers.	
•	Bus topology network is used to add the printers, I/O devices in the offices or home.	
Draw	the seven layered architecture of the OSI model and explain.	6M

Subject Code: 22634

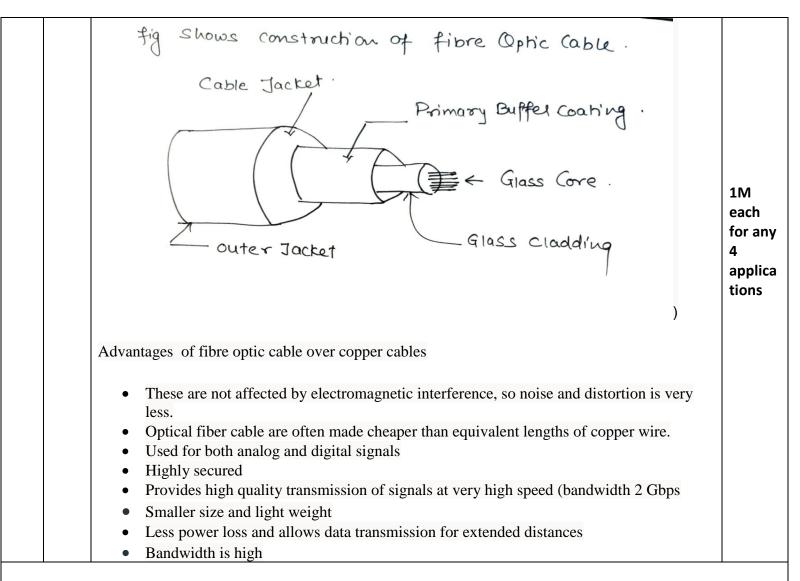
WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Subject Code: 22634

Model Answer

	communication.	Expla
	Data Link Layer: The data link layer is responsible for moving frames from one hop (node) to the next. It Breaks the outgoing data into frames and re-assemble the received frames. It Handle errors by implementing an acknowledgement and retransmission scheme.	n-atio
	Network Layer: The network layer is responsible for receiving frames from the data link layer, and delivering them to their intended destinations among based on the addresses contained inside the frame. The network layer finds the destination by using logical addresses, such as IP (internet protocol). At this layer, routers are a important component used to route information where it needs to go between networks.	
	Transport Layer: The transport layer manages the delivery and error checking of data packets. It regulates the size, sequencing, and ultimately the transfer of data between systems and hosts. One of the most common examples of the transport layer is TCP or the Transmission Control Protocol.	
	Session Layer: The session layer controls the conversations between different computers. A session or connection between devices is set up, managed, and terminated at layer 5. Session layer services also include authentication and reconnections.	
	Presentation Layer: The presentation layer formats or translates data for the application layer based on the syntax or semantics that the application accepts. Because of this, it at times also called the syntax layer. This layer can also handle the encryption and decryption required by the application layer.	
	Application Layer: The application layer is used by end-user software such as web browsers and email clients. It provides protocols that allow software to send and receive information and present meaningful data to users. A few examples of application layer protocols are the Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), Post Office Protocol (POP), Simple Mail Transfer Protocol (SMTP), and Domain Name System (DNS).	
c)	Draw the labeled construction of Fibre optic cable. State four advantages compared to	6M
	copper cables.	
Ans:	Figure shows the labeled diagram for Fiber Optic Cable	2M fo Diagra m



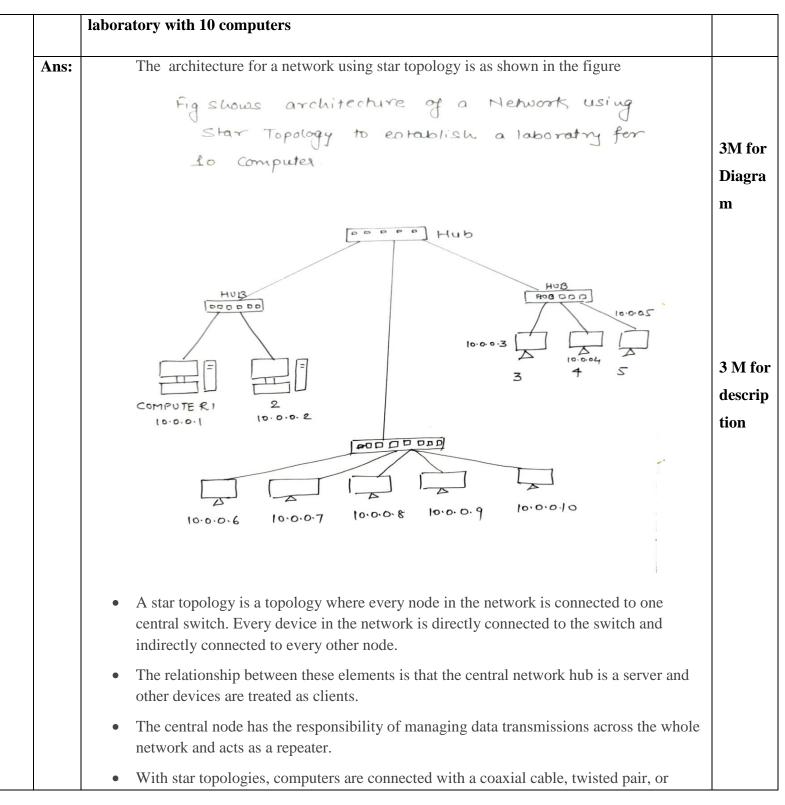
WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Subject Code: 22634

Model Answer

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
6.		Attempt any <u>TWO</u> of the following :	12-
0.		Attempt any <u>1 wo</u> of the following.	
			Total
			Marks
	a)	Draw and describe architecture for a network using star topology to establish a	6M
	,	Druw and describe areinfecture for a network using sur topology to estublish a	UTVI



WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

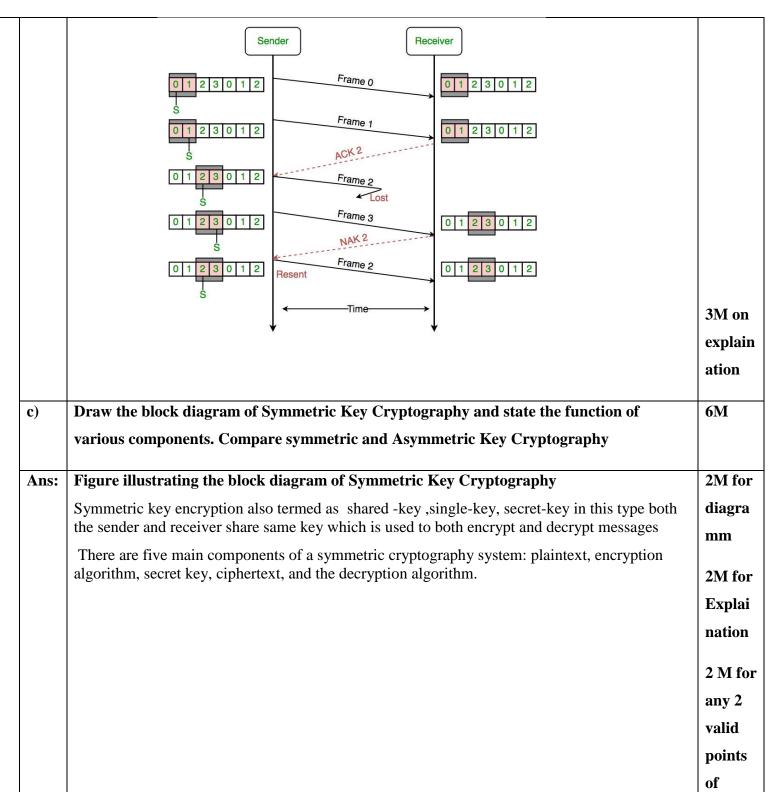
Subject Code: 22634

Model Answer

WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Subject Code: 22634

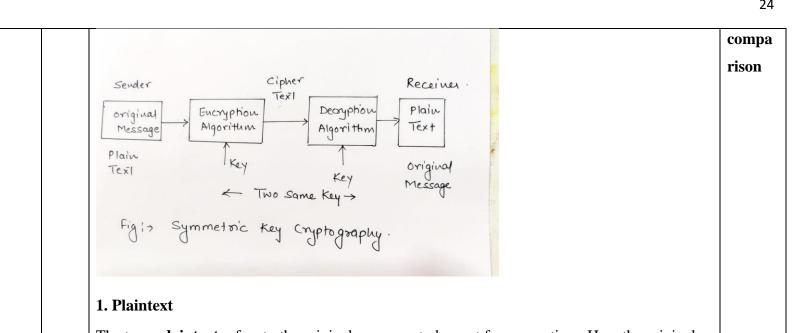

Model Answer

Ans: Select •In the •In the •In select •Select •Select	run troubleshooting when dealing with network performance faults. h suitable diagram explain selective repeat ARQ protocol ctive Repeat ARQ his method the size of sender and receiver window is same selective repeat ARQ only damaged frames are resent s method uses negative acknowledgement to report sequence number of damaged frame re timer expires	6M 3M f
b) With Ans: Select •In the •In the •This befor •Select	run troubleshooting when dealing with network performance faults. h suitable diagram explain selective repeat ARQ protocol ctive Repeat ARQ his method the size of sender and receiver window is same selective repeat ARQ only damaged frames are resent s method uses negative acknowledgement to report sequence number of damaged frame re timer expires	
Ans: Select •In the •In the •In select •Select •Select	ctive Repeat ARQ his method the size of sender and receiver window is same selective repeat ARQ only damaged frames are resent s method uses negative acknowledgement to report sequence number of damaged frame re timer expires	
•In th •In s •This befor •Sele	his method the size of sender and receiver window is same selective repeat ARQ only damaged frames are resent s method uses negative acknowledgement to report sequence number of damaged frame re timer expires	3M f
•In s •This befor •Sele	selective repeat ARQ only damaged frames are resent s method uses negative acknowledgement to report sequence number of damaged frame re timer expires	3M f
•This befor •Sele	s method uses negative acknowledgement to report sequence number of damaged frame re timer expires	3M f
befor •Sele	re timer expires	3N I
		Diag
Norr	ective repeat uses both positive and negative acknowledgement	m
11011	mal Operation : Frames 0 and 1 are accepted when received because they are in the	
recei	iver window range. The sender's window shifts toward right and transmits frames 2 and 3	
.The	receiver accepts frame 3 as it is in receiver's window. The receiver sends NAK2 to show	
that f	frame 2 is lost .The sender then sends only frame 2	
Lost	t and delayed acknowledgement and NAK (Negative Acknowledgement)	
If the	e window capacity is reached and acknowledgements are not received because of delay or	
loss	within the time period the sender retransmits every frame in the window Similarly if NAK	
are lo	ost or delayed the sender retransmits all the frames after last acknowledged frame	

WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Subject Code: 22634



WINTER - 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Subject Code: 22634

The term **plaintext** refers to the original message to be sent for encryption. Here the original message, referred to as plaintext, is converted into apparently random nonsense, referred to as cipher text. The security depends on several factor.

2. Encryption Algorithm

The **encryption algorithm** takes the plaintext and converts it into an unreadable format. The encryption process s consists of an algorithm and a key. The key is a value independent of the plaintext. Changing the key changes the output of the algorithm. Once the cipher text is produced, it may be.

3. Key

Think of the key as a decoder ring: the secret of the scrambled text cannot be read without the key. The **key** holds the information on all the switches and substitutions made to the original plain text.

In symmetric encryption, the key is actually bundled with the algorithm; in this sense, the decoder ring is not universal. The changes and substitutions depend on the key, and vice versa because the sender and recipient share the key.

4. Ciphertext

The **ciphertext** is the text that is now scrambled and ready to be sent. It may look like a random stream of data, and is unreadable.

5. Decryption Algorithm

In the **decryption algorithm**, the secret key is applied to the ciphertext. It converts it back to plaintext, basically performing the encryption in reverse. .. Upon reception, the cipher text can

WINTER – 2022 EXAMINATION

Subject Name: Computer Networking and Data Comm.

Subject Code: 22634

Model Answer

Symmetric Key Encryption	Asymmetric Key Encryption	
It is a simple form of encryption.	It is complicated from of encryption.	
A single key is required for encryption and decryption.	Two separate keys are used to encrypt and decrypt.	
Cypher text will carry smaller or the same size as of original text.	The size of cypher text can be large or the same.	-
Quicker process.	Slower process.	
Preferred for large quantity encryption.	Preferred for small quantity encryption.	
Confidentiality is the only benefit of this method.	Other than confidentiality, it provides authenticity and non-repudiation.	-
Resources are moderately utilised.	Resources and highly utilised.	
Example: RC4, DES, 3DES, etc.	Example: Diffie-zhellman, El Gamal, ECC, RS, etc.	