

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

·tified)

MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.		Answers	Marking Scheme
1	(A)	Attempt	any FIVE of the following:	10- Total Marks
	(a)	State the (i) (ii) (iii) (iv)	e frequency range for following bands: C Band X Band K Band Ku Band	2M
	Ans:	(i) (ii) (iii) (iv)	C Band = 4 GHz to 8 GHz X Band = 8 GHz to 12.5 GHz K Band = 18 GHz to 26.5 GHz Ku Band = 12.5 GHz to 18 GHz	Correct frequen cy range for each band ½ M
	(b)	State dif	ferent types of waveguides.	2M

Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer

Ans:	Types of waveguides	Any t
		types
	(1) Rectangular waveguide	2M
	(2) Circular waveguide	
	(3) Elliptical waveguide	
(c)	State the name of Tee Joint used as Duplexer and Mixer.	2M
Ans:	E-H plane Tee Joint used as Duplexer and Mixer.	Corre
		answ
		2M
(d)	Draw neat sketch of bends.	2M
Ans:		Any d
		diagr
		2M
	A	
	(a) H-PLANE BEND	
	OR	
	E-bend	
	E-PLANE BEND	
e)	List any two applications of PIN diode.	2M
Ans:	Applications of PIN diode:	Any 2
	(1) It is used as switch.	appli
	(2) It is used as phase shifter.	on 2
	(3) It is used as amplitude modulator.	
	(4) It is used as limiter.	
f)	List the two advantages and two disadvantages of CW RADAR.	2M

BOARD OF TECHNICAL EDUCATION

•tified)

LONG CO

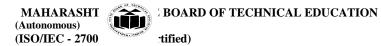
دلألأد

MAHARASHT (Autonomous)

(ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Microwave and RADAR


Subject Code:

22535

Model Answer

Ans:	Advantages of CW RADAR.	Any 2advan
	(1) Capable of giving accurate measurement of relative velocity.	ages a
	(2) Low transmitting powers.	2disad
	(3) Compact hence can be used for mobile applications like police radar.	antage
	(4) Single frequency transmission and hence narrow receiver bandwidth.	1M ead
	(5) Zero minimum range.	
	(6) Ability to see moving targets in the presence of large echos from stationary target to which it is blind.	
	(7) Simple in design and construction.	
	Disadvantages of CW RADAR.	
	(1) Maximum power transmitted is limited and hence limit on its maximum range.	
	(2) It is unable to measure range.	
	(3) Separate antennas are required for transmitter and receiver.	
	(4) It rather easily confused by the presence of a large number of target.	
g)	(4) It rather easily confused by the presence of a large number of target.Give the applications of RADAR.	2M
g) Ans:		2M Any 4
	Give the applications of RADAR. Applications of RADAR	Any 4 correct
	Give the applications of RADAR. Applications of RADAR (1) It is used in navigation to measure the speed of distant objects.	Any 4 correct applica
	Give the applications of RADAR. Applications of RADAR (1) It is used in navigation to measure the speed of distant objects. (2) It is used for measuring speed of cars and trucks.	Any 4 correct applica
	Give the applications of RADAR. Applications of RADAR (1) It is used in navigation to measure the speed of distant objects. (2) It is used for measuring speed of cars and trucks. (3) It is used to measure relative velocity of the aircraft.	
	Give the applications of RADAR. Applications of RADAR (1) It is used in navigation to measure the speed of distant objects. (2) It is used for measuring speed of cars and trucks. (3) It is used to measure relative velocity of the aircraft. (4) Tracking radar are used on missiles and planes to acquire a target.	Any 4 correct applica
	 Give the applications of RADAR. Applications of RADAR (1) It is used in navigation to measure the speed of distant objects. (2) It is used for measuring speed of cars and trucks. (3) It is used to measure relative velocity of the aircraft. (4) Tracking radar are used on missiles and planes to acquire a target. (5) Police radars for directing and detecting speeding vehicles. 	Any 4 correct applica
	Give the applications of RADAR. Applications of RADAR (1) It is used in navigation to measure the speed of distant objects. (2) It is used for measuring speed of cars and trucks. (3) It is used to measure relative velocity of the aircraft. (4) Tracking radar are used on missiles and planes to acquire a target.	Any 4 correct applica

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
2		Attempt any THREE of the following:	12- Total Marks

Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer

				corr
	1.	It acts as a High Pass Filter	All frequencies can pass through.	poin 4M
-	2.	It is one conductor transmission system. The whole body of the waveguide acts as ground. The wave propagates through multiple reflections from the walls of waveguide (WG).	It consists of two conductors. One or both conductors are used to carry the wave.	
	3.	The system of propagation in waveguide is in accordance with field theory.	The system of propagation in transmission line (TL) is in accordance with circuit theory.	
	4.	TE and TM modes exist in WG.	TEM mode exists in TL.	
	5.	Wave impedance (characteristic impedance) is a function of frequency.	Characteristic impedance in TL depends on the physical parameters of TL.	
	6.	The velocity of propagation of wave in WG is less than the free space velocity.	The velocity of propagation of waves is equal to free space velocity.	
	7.	WG handles greater power and possesses less resistance.	TL handles less power as compared to WG.	
	8.	Lower signal attenuation at high frequencies than TL.	Significant signal attenuation at high frequencies due to conductor and dielectric losses.	

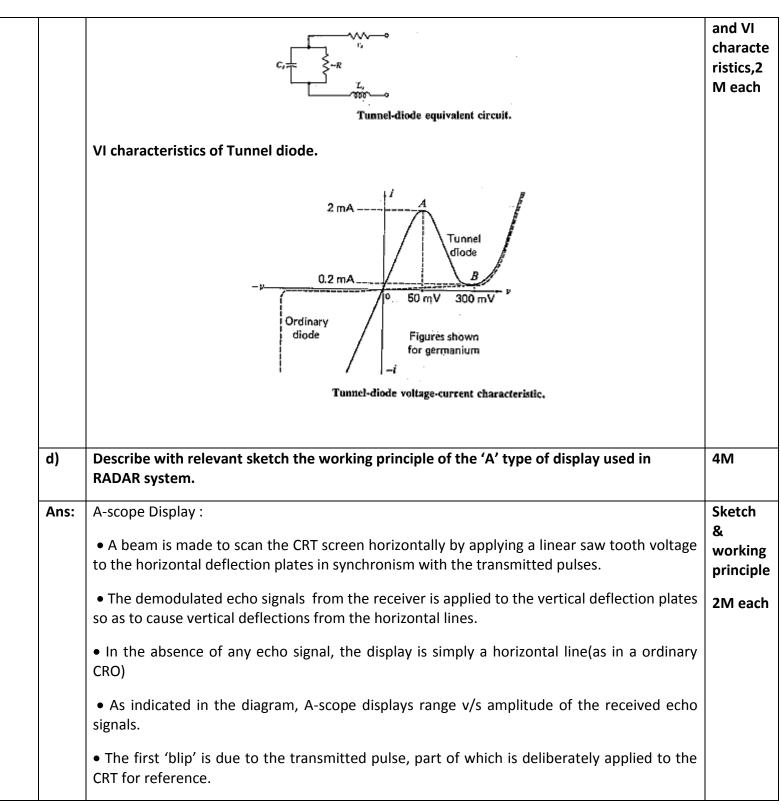
Subject Name: Microwave and RADAR

WINTER-19 EXAMINATION

Subject Code:

22535

Model Answer


Ans:	<u>Circulator:</u> <u>Diagram :</u>				
	Line parallel to port 1	worki princi 1.5M each			
	Port 1 Port 2 Port 2	Any ty applic ons 11			
	working principle of circulator:				
	1. A four port Faraday rotation circulator is shown in figure above. The power entering port 1 is $TE_{I,0}$ mode and is converted to $TE_{I,1}$ mode because of gradual rectangular to circular transition.				
	 2. This power passes port 3 unaffected since the electric field is not significantly cut and is rotated through 45° due to the ferrite, passes port 4 unaffected and finally emerges out of port 2. 				
	 3. Power from port2 will have plane of polarization already tilted by 45° with respect to port 1. This power passes port 4 unaffected because again the electric field is not significantly cut. This wave gets rotated by another 45° due to the ferrite rod in the clockwise direction. This power whose plane of polarization is tilted through 90° finds port 3 suitably aligned and emerges out of it. 4. Similarly port 3 is coupled only to port 4 and port 4 only to port 1. 				
	Two applications:				
	 (1) It can be used as duplexer for a radar antenna system. (2) It can be used as coupling elements in reflection amplifier. (3) It can be used as an isolator. 				
c)	Draw equivalent circuit and VI characteristics of Tunnel diode.	4M			
Ans:	Equivalent circuit of Tunnel diode.	equiva nt circuit			

Subject Code:

22535

Subject Name: Microwave and RADAR

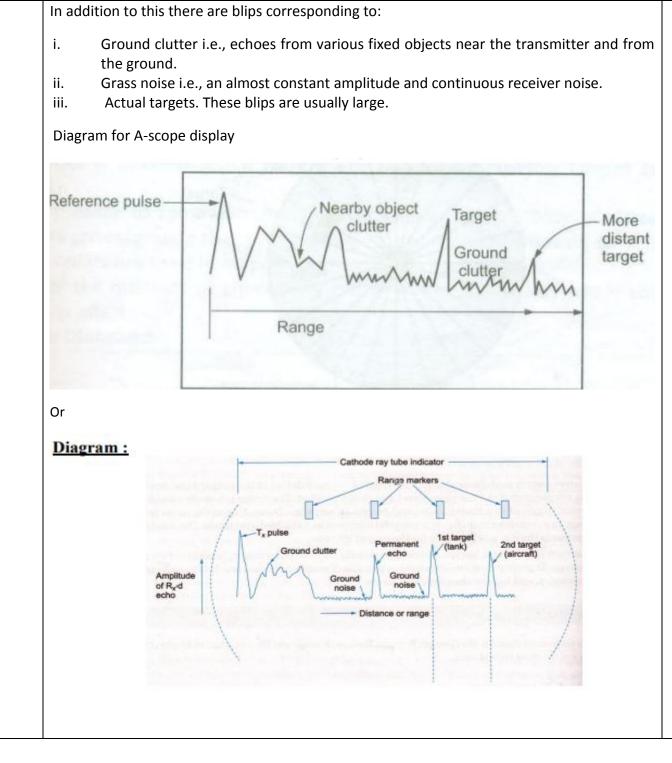
Model Answer

tified)

MAHARASHT

(Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION


Subject Name: Microwave and RADAR

Subject Code:

22535

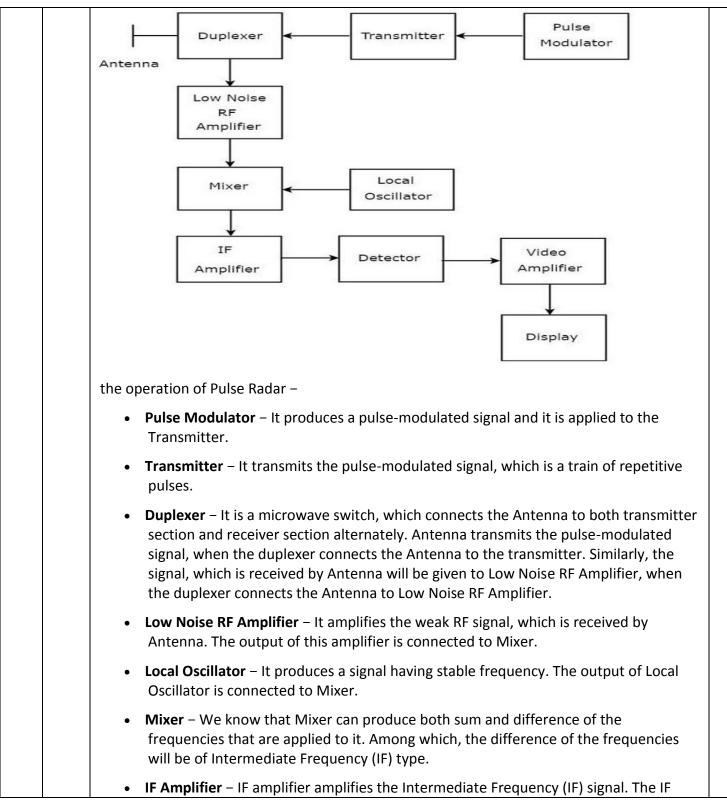
Model Answer

Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer


Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any THREE of the following :	12- Total Marks
	a)	Sketch the field pattern of TE_{10} and TE_{11} modes of rectangular waveguide.	4M
	Ans:	TE10 TE11	
		Side view Topp Topp Topp Topp Topp Topp Topp Top	2M each
	b)	Draw the block diagram of pulsed RADAR system. Explain its operation with applications.	4M
	Ans:	·	block diagram & operatio n 1.5 M each
			for any 2 applicati ons 1M

Subject Name: Microwave and RADAR

WINTER-19 EXAMINATION

Subject Code:

tified)

WINTER-19 EXAMINATION

Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer

Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer

		11
	Horizontal scan –	
	The horizontal scan is the simplest antenna scan but a disadvantage of this scanning in the horizontal plane only however there are many applications for this type of scanning used.	
	Helical scan –	
	The radar antenna is continuously related to azimuth while it is simultaneously increase or decrease in an elevation.	
	Spiral scan-	
l	If a limited area of more or less circular shape is to be covered, then the spiral scan may be used.	
	Nodding scan-	
	The nodding scan is produced by rocking the radar antenna rapidly in elevation and rotating more slowly in azimuth the scanning in both plane is obtained.	
d)	Describe the working principle of TWT and state its two applications.	4M
Ans:	Electron Gun Input Helix Attenuator Collector Cathode Physical construction of TWT	(2 marks diagram, 2 marks for applicati ons any two)
	Consider a typical TWT shown in above fig.	
	An electron gun produces very narrow beam of electrons which travel through long axial helix.	
1	The electron beam is attracted towards the collector and acquires high velocity. the signal to be amplified is applied to the input terminal of helix through waveguide.	

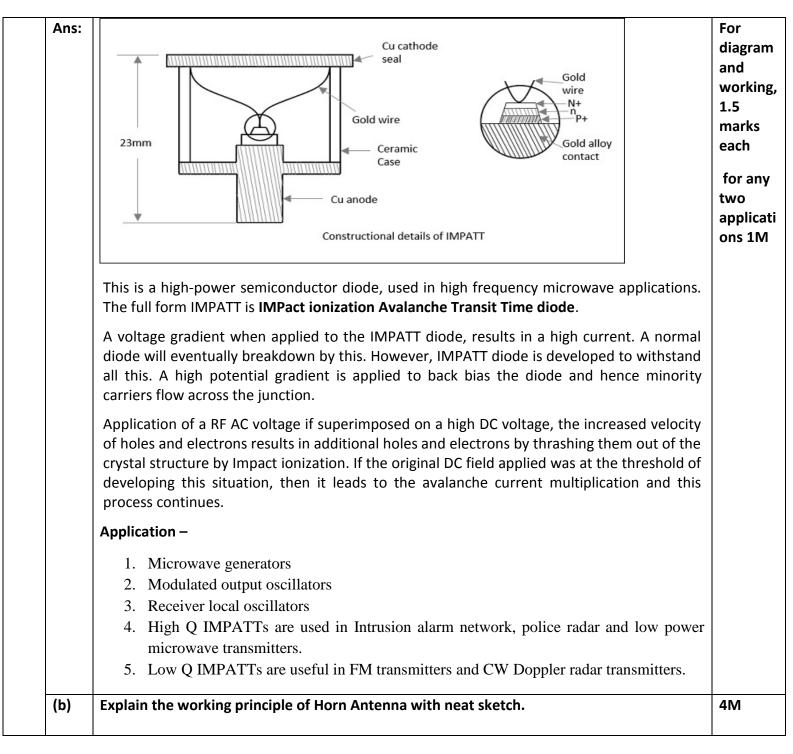
Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer

	(a)	Describe the operation with construction diagram IMPATT diode. State its two applications.	4M
4		Attempt any THREE of the following :	12- Total Marks
Q. No.	Sub Q. N.	Answers	Marking Scheme
		 TWTs are used in high power pulsed radars and ground based radars. 	
		 Continuous wave high power TWTs are used in Troposcatter links, because of large power and large bandwidths, to scatter to large distances. 	
		TWTs have a long tube life, due to which they are used as power output tubes in communication satellites.	
		• TWTs are also used in wide-band communication links and co-axial cables as repeater amplifiers or intermediate amplifiers to amplify low signals.	
		• TWT is used in microwave receivers as a low noise RF amplifier.	
		Applications-	
		The axial RF field and the electron beam can now interact continuously with electron beam bunching. As a result, complete bunching takes place and achieve high gain.	
		The travelling wave travels with speed equal to the speed of light. the axial speed of RF field is equal to the speed of light multiplied by ratio of helix pitch to circumference.	

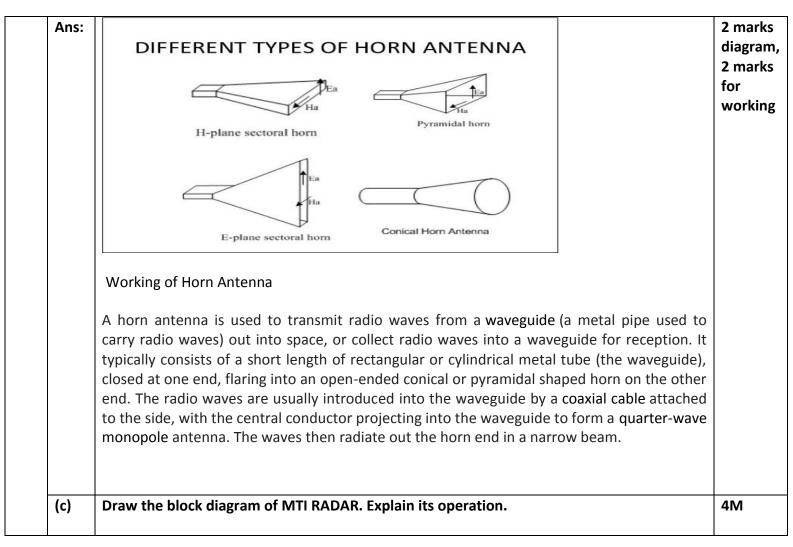

Subject Name: Microwave and RADAR


WINTER-19 EXAMINATION

Subject Code:

22535

Model Answer

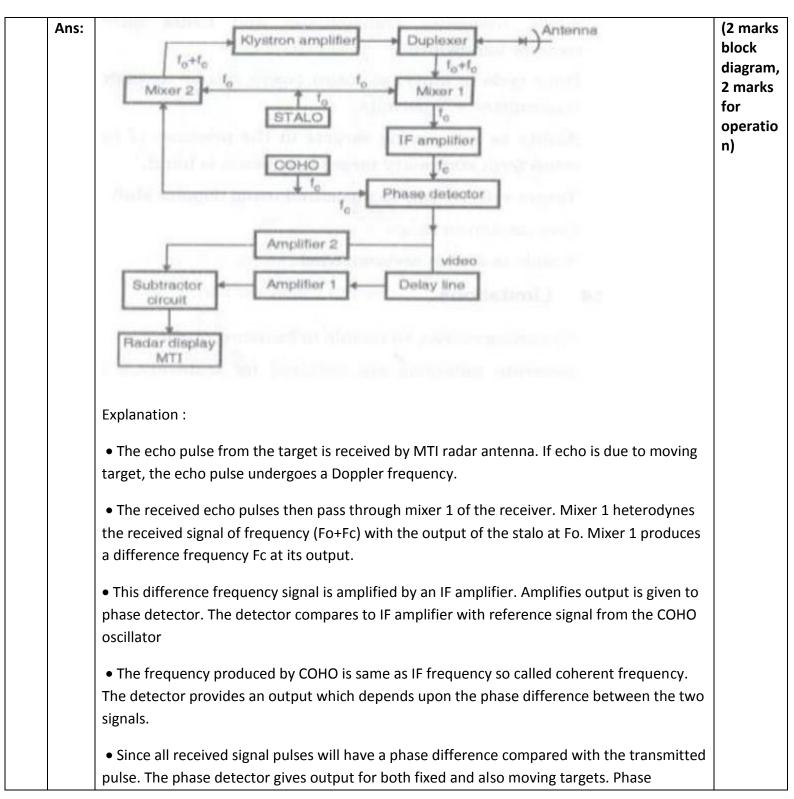

Subject Name: Microwave and RADAR

WINTER-19 EXAMINATION

Subject Code:

22535

Model Answer



Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer

tified)

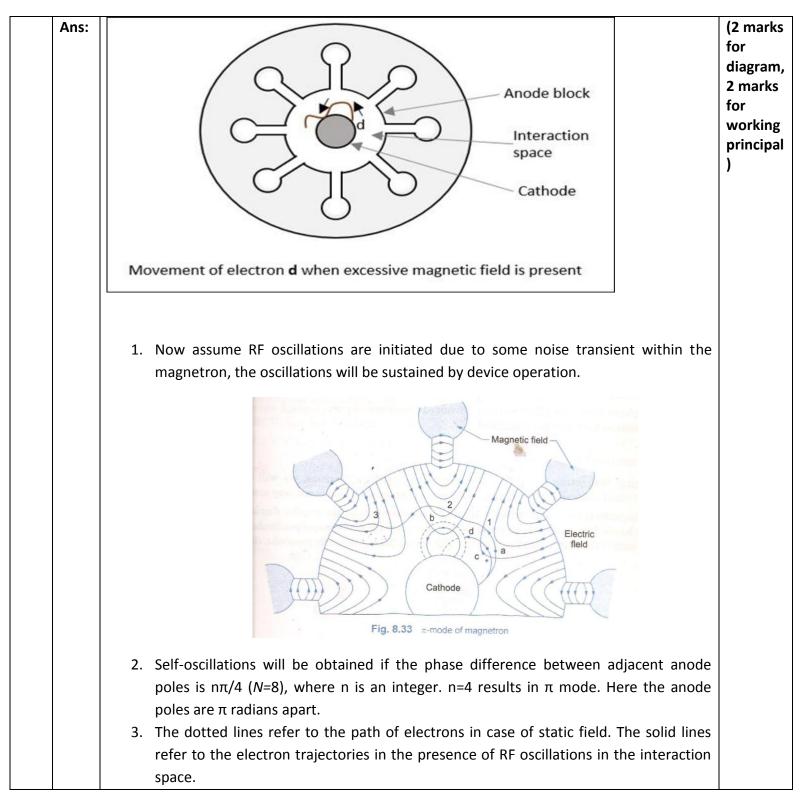
WINTER-19 EXAMINATION

Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer


. • Doppler frequency shift causes this variation in the phase difference. A change of half cycle in Doppler shift would cause an output of opposite polarity in the phase detector output.
• The output of phase detector will have an output different in magnitude and polarity from Successive pulse in case of moving targets. And for fixed target magnitude and polarity of output will remain the same as shown in figure.
(a) - (b) - (b) - (b) - (b) - (c)
Fig. 3.3.2(i) : Phase detector output for three successive pulses

Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer

"tified)

MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

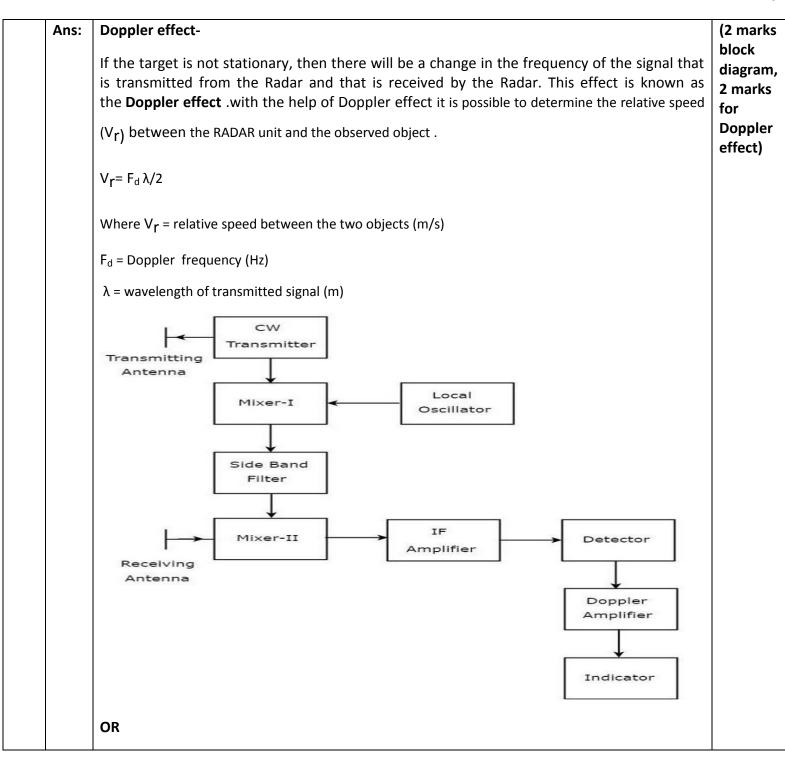
Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer

4. The electron 'a' is seen to be slowed down in the presence of oscillations thus transferring energy to the oscillations during its longer journey from cathode to anode. Such electrons which participate in transferring energy to the RF field are called as favored electrons and these electrons are responsible for bunching effect. 5. An electron 'b' is accelerated by the RF field. Instead of imparting energy to the oscillations, it takes energy from the oscillations resulting in increased velocity. Hence bends more sharply, spends very little time in the interaction space and is returned back to the cathode. Such electrons are called un-favored electrons which do not participate in the bunching process; rather they are harmful as they cause back heating. 6. Similarly electron 'c' which is emitted little later to be in correct position moves faster and tries to catch up with electron 'a' and an electron emitted at d will be slowed down to fall back in step with the electron 'a'. 7. This result in all favored electrons like a, c, d to form a bunch and are confined to electron clouds or spokes as shown in fig below. This process is called **phase focusing** effect corresponding to the bunch of favored electrons around the reference electron 'a'. The spokes so formed in the π -mode rotate with an angular velocity corresponding to 2 poles/cycle. Electron orbits Anode 8. The phase focusing effect of these favored electrons imparts enough energy to the RF oscillations so that they are sustained. (e) Explain Doppler effect and draw block diagram of CW Doppler RADAR. 4M :tified)

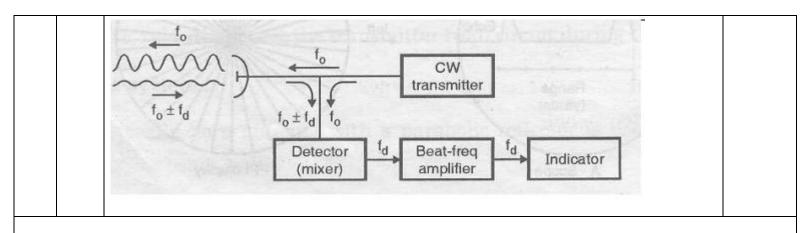

WINTER-19 EXAMINATION

Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer



Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer

Q. No.	Sub Q. N.	Answers	Marking Scheme
5.		Attempt any TWO of the following:	12- Tota Marks
	a)	Draw the construction of GUNN diode and describe the application of it.	6M
	Ans:		
		Construction of GUNN Diode:-	3 M for construc tion
		Gold allay contacts Active contacts Active Gold n ⁺ substrate allay allay Active allay Active allay Active allay alla	
		n layer screenergy gap Heat sink Cathode	
		or	

MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer

	Gold wire Flange Active Byer Contact Byer Gold plated molybdenum stub Application: 1.In Radar transmitters (police Radar, CW Doppler Radar) 2. Pulsed Gunn diode oscillators used in transponders, for air traffic control and in industry telemetry system. 3. Fast combination and sequential logic circuit. 4. As pump sources in preamplifier. 5. In microwave receiver as low and medium power oscillator.	Any three applicati ons 1 M for each
b)	Determine cutoff wavelength for the dominant mode in rectangular waveguide of breadth 10 cm for 2.5 GHz signal propagates in this waveguide in the dominant mode. Calculate cut off wavelength and group velocity.	6M
Ans:		1M for cut off wavelen gth

MAHARASHT (Autonomous) (ISO/IEC - 2700 tified)

LONG CO

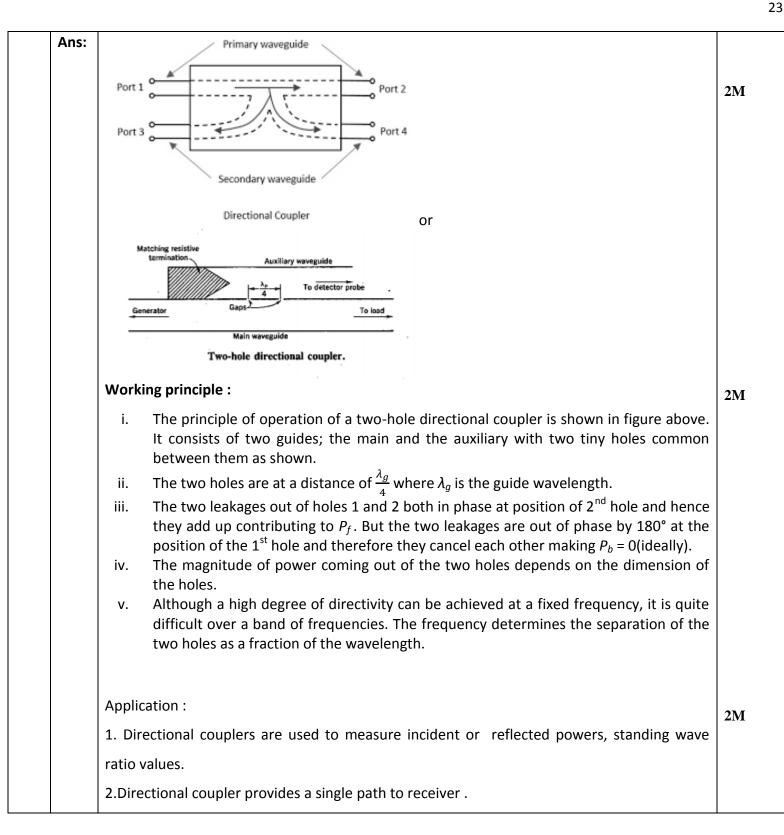
WINTER-19 EXAMINATION

Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer


c)	Explain the working principle of two hole directional coupler and state its applications.	6M
	CARL CYDE	
	= 24.×10 ¹⁰ cm/300	
	$\frac{v_{0}}{v_{0}} = \frac{c^{2}}{v_{0}} = \frac{(3x)e^{10}y^{2}}{3\cdot76x}$	
	War 62 - 13×101032	
	VP Yg = e2	
	= 3.75 x1010 cm/ doc	
	$V_{P} = \frac{c}{\sqrt{I - \left(\frac{1}{A_{D}}\right)^{2}}} = \frac{3 \times 10^{10}}{0 \cdot 8}$	
	Vie G IS	
	$1g = \frac{12}{\sqrt{1 - (\frac{12}{3}a)^2}} = \frac{12}{4\cdot g} = 16007$	
	10 0 12 12	answei
	$But \ \lambda = \frac{c}{f} = \frac{3 \times 10^{10}}{2.5 \times 10^{7}} = 12.000$	final answe
	n = 1 Vi-(Ast	2M for
	$2p = \frac{1}{2}$	formul
	f = 2.5 6Hz	group velocit
	Le for TE10 = 20 = 2×10 = 2000	1M for
	7510 mode	answe
	In a rectangular wavequiet the eleminant mouse in the	2M for final
	set":	formul

Subject Code:

22535

Subject Name: Microwave and RADAR

tiffed)

WINTER-19 EXAMINATION

Subject Name: Microwave and RADAR

Subject Code:

22535

	1		-11		
Q.	Sub	Answers	Marking		
No.	Q. N.		Scheme		
6.		Attempt any TWO of the following :	12- Total		
			Marks		
	a)	Describe the bunching process of two cavity klystron with help of Apple gate diagram and state its two applications.	6M		
	Ans:				
		Coaxial loop			
		RF In RF out	For		
		Electron Electron Coaxial loop	construc tional		
		bunches Coaxial loop Collector	diagram		
		(anode)	&		
			working		
		Gap A Drift space Gap B	1.5 M		
		Input Output cavity	each		
		Focussing cavity electrodes	2M for		
		(magnetic) (Buncher) (Catcher)	apple		
		V	gate		
			diagram		
			1M for		
		Working/Operation:	any 2 applicati		
		• The RF signal to be amplified is used for exciting the input buncher cavity thereby			
		developing an alternating voltage of signal frequency across gap A.			
		• Consider the effect of this gap voltage on the electron beam passing through gap A by			
		means of an Applegate diagram. At point B on the input RF cycle, the alternating			
		voltage is zero and going positive.			
		• At this instant, the EF across the gap A is zero and an electron which passes through			

tified)

MAHARASHT (Autonomous) (ISO/IEC - 2700

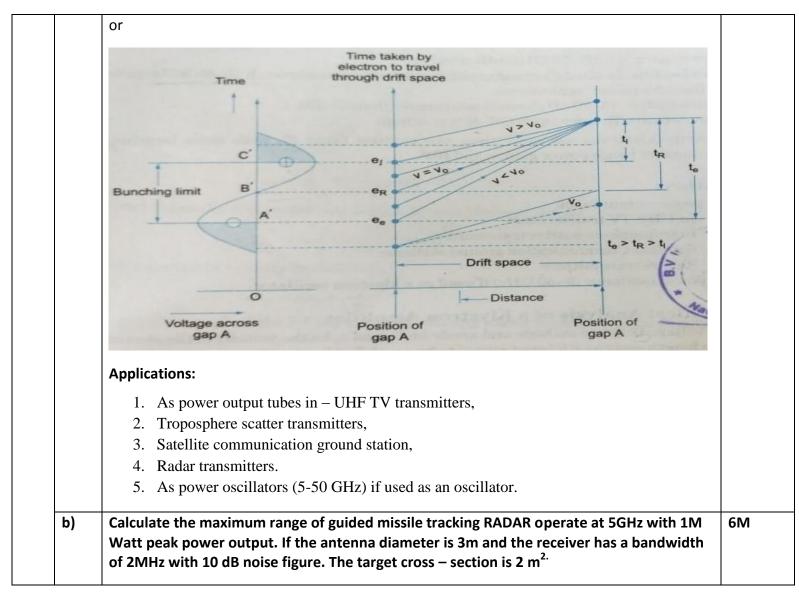
WINTER-19 EXAMINATION

Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer


the gap A at this instant is unaffected by the RF signal. Let us consider this electron be called the reference electron e_R which travels with unchanged velocity $v_0 = \sqrt{\frac{2eV}{m}}$ where V is the anode to cathode voltage. At point C of the input RF cycle, an electron which leaves the gap A later than the reference electron called the late electron e_l is subjected to maximum positive RF voltage and hence travels towards gap B with an increased velocity $(v > v_0)$ and this electron tries to overtake the reference electron e_R . Similarly an early electron e_e that passes the gap A slightly before the reference electron e_R is subjected to a maximum negative voltage field. Hence, this early electron is decelerated and travels with a reduced velocity. This electron falls back and the reference electron catches up with the early electron. Therefore, the velocity of electron varies in accordance with the input RF voltage resulting in velocity modulation of the electron beam. As a result of these actions, the electrons in the bunching limit (between A and C) gradually bunch together as they travel down the drift space from gap A to gap B and excite oscillations in the output cavity (catcher). The density of electrons passing gap B vary cyclically with time i.e. the electron beam contains an ac current and is current modulated. The drift space coverts the velocity modulation into current modulation Bunching occurs only once per cycle, centered on the reference electron. Bunches Distance (to gap B) Gap A Reference electron y **Sap A voltage** time Bunching

Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer

BOARD OF TECHNICAL EDUCATION

tified)

MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer

Ans: Griven : $P_{\pm} = 1 \text{ m} \omega = 1 \times 10^6 \text{ w}$ 2 M for $T = 2m^2$ B = 2MHz = 2×10⁶Hz formula D= BM 2M cal. F(dB) = IDdB $\therefore F = antiloq_10\left(\frac{10}{10}\right) = 10$ 2 M for final $f = SGHz = SX10^{9}Hz$ $A = \frac{G}{f} = \frac{9\times10^{8}}{5\times10^{9}}$ m ans. $= 0.06 \text{ m} - \frac{14}{4} \text{ m}$ Rmax = 48 $\left[\frac{P_{t} D^{4} \sigma}{B \pi^{2} (F-1)}\right]^{4} \text{ km}$ $= 48 \left[\frac{1 \times 10^{6} \times 3^{4} \times 2^{2}}{2 \times 10^{6} \times (0^{\circ} 06)^{2} \times (10^{-1})} \right]^{1/4}$ $= 48 \left[\frac{1 \times 10^{6} \times 3^{4} \times 2}{2 \times 10^{6} \times (0.06)^{2} \times 9} \right]^{1/4} \text{Km}$ = 48 [2500] KM = 48 × 7.07106 Km 339.41 km.

Subject Name: Microwave and RADAR

Subject Code:

22535

Model Answer

7	ο
Z	o

c)	Explain blind speed of RADAR. Write step by step procedure to calculate blind speed.	
Ans:	Blind speed of RADAR:	3№
	The radar blind speed is the speed at which the target will not be visible to the radar. This speed can be calculated based on the frequency/wavelength of the wave and the Pulse Repetition Time.	
	FORMULA	
	$v = \frac{\lambda}{2 * PRT}$	
	Where,	
	f = frequency of operation	
	PRT = pulse repetition time	
	v = radar blind speed	
	If the Doppler frequency produced by a moving target is exactly the same as PRF, then sampling occurs at the same point in each cycle. With blind speed moving targets are suppressed by an MTI system-like ground clutters.	
	Procedure to calculate blind speed:	
	 The blind speeds are encountered a phase difference of exactly 2π or multiple. It can thus , be seen that if a target moves a distance of half wavelength between the successive pulses, then the change in phase will be precisely 2π radians. Thus , we say that 	3№
	$V_b = \frac{n\lambda}{2} = f_r$	
	where, λ = Wavelength of the transmitted signal n = Any integer	
	$V_b = Blind speed$	
	the second state of the se	

Subject Name: Microwave and RADAR

WINTER-19 EXAMINATION

Subject Code:

22535

Model Answer

Consequently , the lowest two blind speeds will be 67.5km/hr and 135 km/hr for n=1 and n=2 respectively.	