

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

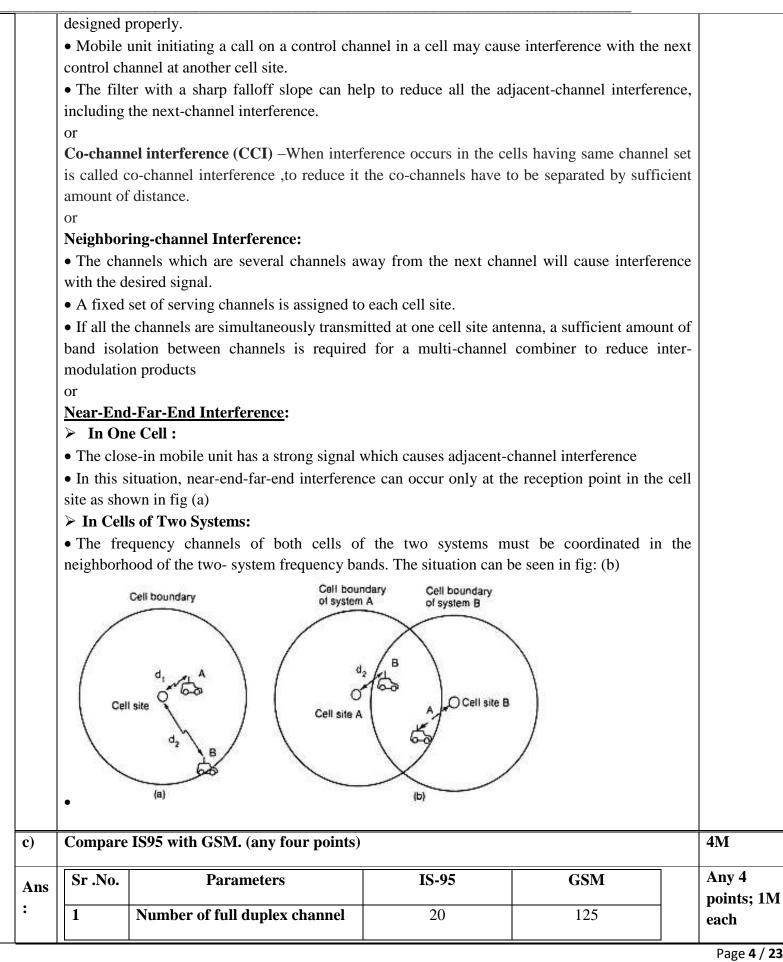
(Autonomous) (ISO/IEC - 2700 tified)

MAHARASHTF

WINTER - 19EXAMINATION

Subject Name: Mobile And Wireless Communication Model Answer Subject Code:

22533

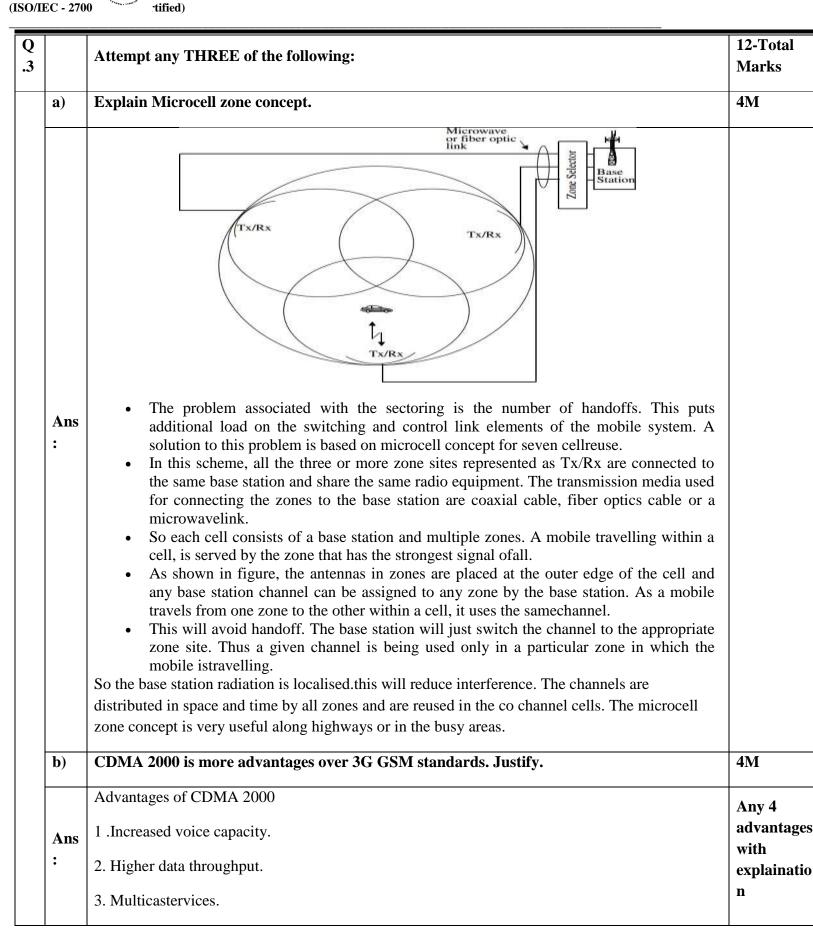

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

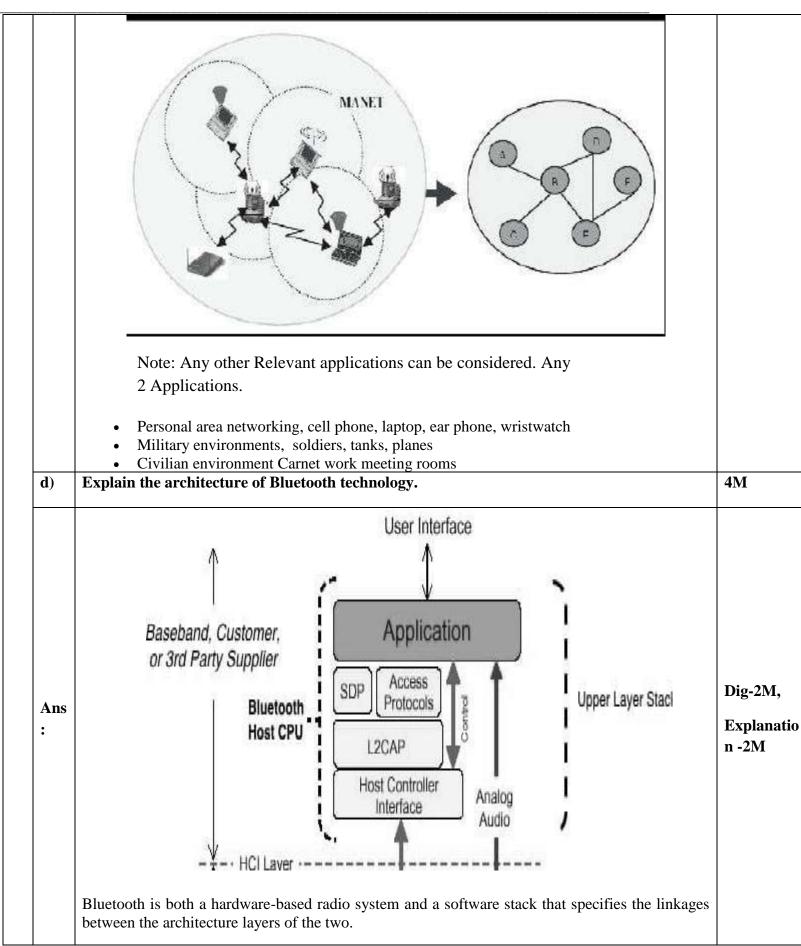
Q.	Sub	Answer	Marking
Ν	Q.		Scheme
0.	N.		
Q			10-Total
.1		Attempt any FIVE of the following:	Marks
	a)	State two features of CDMA 2000.	2M
		1. It has very high packet data rates.	
		2. It has high radio channel bandwidth of 1.25 MHz	
		3. It has global seamless connectivity.	
		4. Very good performance	
		5. Support for advanced mobile services	
		6. Efficient use of spectrum	
		7. selection of device	
	Ans	8. Evolution path	Any two
	:	9. Flexible	1M each
		10. CDMA2000 uses Frequency Division Duplexing-Multicarrier (FDD-MC) mode. Here,	
		multicarrier implies N \times 1.25 MHz channels overlaid on N existing IS-95 carriers or	
		deployed on unoccupied spectrum. CDMA2000 includes –	
		11. 1x — uses a spreading rate of 1.2288 Mcps.	
		12. $3x$ — uses a spreading rate of 3×1.2288 Mcps or 3.6864 Mcps.	
		13. 1xEV-DO (1x Evolution – Data Optimized) — uses a spreading rate of 1.2288 Mcps,	
		optimized for the data	

b)	Define forward control channel and reverse control channel.	2M
Ans :	Forward control channel:- Radio channel used for transmission of data from base station to mobile stations. Reverse control channel:- Radio channel used for transmission of data from Mobile station to base stations.	
c)	Explain the term cell splitting.	2M
Ans :	 Cell splitting:- Cell splitting is the process of subdividing a congested cell into smaller cells, each with its own base station and corresponding reduction in antenna height and transmitter power. Cell splitting increases the capacity of a system since it increases number of times that channels are reused. 	
d)	List two features of 4G LTE.	2M
Ans :	 Peak data rates: downlink – 1Gbps; uplink -300Mbps Spectrum efficiency: 3 times greater than LTE. 10 times faster than the 3G network. Peak spectrum efficiency:downlink -30bps / Hz; uplink – 15bps / Hz 4G LTE is flexible and reliable. Easy to standardize and it offers affordability 	Any 2 features- 1M each
e)	State the spectrum requirement of IMT 2000.	2M
Ans :	Common spectrum for IMT 2000 world-wide is from 1.8 GHz-2.2 GHz band or For Uplink: 1885-2025 MHz (Mobile satellite services) Downlink: 2110-2200 MHz (Mobile satellite services)	2M 2M
f)	State any two features of bluetooth technology.	2111
Ans :	 Features of bluetooth technology:- (Any two) 1. It is implemented using IEEE 802.15 standard. 2. Used ISM band at 2.4 GHz 3. Uses FHSS technique 4. Data transfer rate is 1 Mbps. 5. Maximum range is 10 meters. 6. It is wireless PAN standard which uses radio link instead of wires. 7. Uses TDMA (TDD-TDMA) 8. Type of modulation used GFSK 9. It does not have a very good quality. 10. It uses 1600 hops / second. 	Any 2 features - 1M each
	Give the applications of WLAN technology.	2M
g)	or the approximations of the monogy.	

	:	moving.	1M each
		2. WLAN can set up networks in the location affected by earthquakes and other disasters	
		where no suitable infrastructure is availabe.	
Q		Attempt any THREE of the following:	12-Total
.2			Marks
	a)	State the advantages of CDMA 2000 over 3G-GSM standards.	4M
-		Advantages of CDMA 2000 over GSM:-	
		1. Increased voice capacity	
		2. Higher data throughput	
		3. Multicast services	Any 4
	Ans	4. Frequency band flexibility	-
	:	5. Incresed battery life	advantages 1M each
		6. Synchronization	INI each
		7. Power control and supplemental channels	
		8. Flexible channel structure in support of multiple services with various QoS and variable	
		transmission rates.	
-	b)	State the types of interference in cellular system. Explain any one type in Detail.	4M
		Types of Interference in cellular system:-	Four
		The common types of interference in cellular networks are:	Types 2M,
		1. Self-interference	¹ / ₂ M each
		2. Multiple access interference	
		3. Co-channel interference (CCI)	
		4. Adjacent channel interference (ACI).	
		5. Near-End-Far-End Interference	Any
		Explanation:-	1explanati
		<u>Self-interference</u>	on-2M
		Self-interference is due to interference induced among signals that are transmitted from a shared	
		transmitter. The amount of interference induced depends on the modulation type. Interference	
	Ans	between the uplink and downlink transmissions in a FD duplex system may be classified as self-	
	:	interference, as it occurs among signals send on the same two-way connection.	
		or	
		Multiple access interference	
		Multiple access interference refers to the interference induced among the transmission from	
		multiple radios using the same frequency resource to a single receiver.	
		or	
		Adjacent-Channel Interference:	
		It occurs in a radio channel when unwanted energy from channels adjacent to it falls into its	
		desired bandwidth.	
		or	
		<u>Next-Channel Interference</u> :	
		• Next-channel interference will arrive at the mobile unit from other cell sites if the system is not	



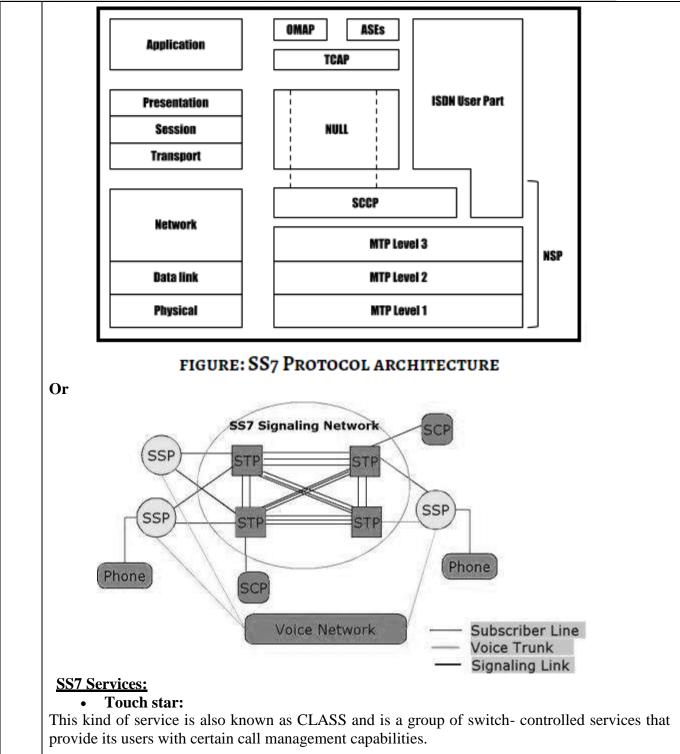
	Bandwidth of each channel	1.25MHz	200KHz	
3	Muliple Access method	CDMA	TDMA	
4	Number of users per chann	el 64	8	
5	Type of Modulation	BPSK / QPSK	GMSK	
6	Data rate	9.6 / 14.4 Kbps	27.833Kbps	
7	Frame duration	20ms	4.615ms	
8	Hand off	Soft	Hard	
9	Frequency spectrum	800 or 1900 MHz	890-915 MHz 935- 960MHz	
d) Id	entify the block diagram and state t	he functions of blocks A, B	and C in Figure No.1	4M
	Corrier Enput Miscer From Phase At the quarequesticletor channel synthesizer Misception highlifter trequency Misception highlifter trequency synthesi	Final A B Final A B Institute Directional Isolate Couples Duple Automatic Power Control Power Control Detector Couples Couples Detector Couples Detector Couples Detector Couples Couples Couples Detector Couples Co	artem De afr	Identificati on 1M Function of A,B,C- 1M each
	UNIC	Fig. No. 1		


MAHARASHTI (Autonomous)

	4. Frequency band flexibility.	
	5. Migration paths.	
	6. Serves multiple markets.	
	7. Supports multiple service performances.	
	8. Full backward compatibility.	
	9. Increased battery life.	
	10. Power control.	
	It provides high data rate internet access capabilities in gradual manner within the existing	
	systems.	
c)	Describe MANET and write applications of MANET.	4M
	• Mobile ad hoc networks (MANETs) are envisioned to become key components in the 4G architecture, and ad hoc networking capabilities are expected to become an important part of overall next-generation wireless network functionalities.	
	• Mobile ad hoc networks are formed dynamically by an autonomous system of mobile nodes that are connected via wireless links without using an existing network infrastructure or centralized administration.	Decerintic
Ans :	• The nodes are free to move randomly and organize themselves arbitrarily; thus, the network's wireless topology may change rapidly and unpredictably.	Descriptio n -2M,any 2 appl-2M
	• Such a network may operate in a standalone fashion, or may be connected to the larger Internet.	
	• Mobile ad hoc networks are infrastructure less networks since they do not require any fixed infrastructure such as a base station for their operation	
	fixed infrastructure such as a base station for their operation.	

tified)

MAHARASHTF (Autonomous) (ISO/IEC - 2700



	a) Ans :	Draw signalling system SS7 and explain services and performance. Signalling system SS7 and explain services and performance.	4M Dig-2M, any 1 service-1M Performan ce-1M
Q .4		Attempt any THREE of the following :	12-M
		The heart of this specification is the protocol stack, which is used to define how Bluetooth works. The Bluetooth protocol stack is a set of layered programs. Each layer in a protocol stack talks to the layer above it and to the layer below it. Think of Bluetooth as having two well-defined layers of functionality in the stack. These layers range from the lower level hardware-based radio system, to an upper level software stack that specifies the linkages between the layers . Lower Stack Layers The lower layers are the <i>basic core specifications</i> that describe how Bluetooth works. The base of the Bluetooth protocol stack is the radio layer , or module. The radio layer describes the physical characteristics of the transceiver. It is responsible for modulation/demodulation of data for transmitting or receiving over radio frequencies in the 2.4 GHz band. This is the physical wireless connection. It splits the transmission band into 79 channels and performs fast <u>frequency hooping</u> (1600 hop/sec) for security. Upper Stack Layers The upper stack layers consist of <i>profile specifications</i> that focus on how to build devices that will communicate with each other, using the core technology. The host controller interface (HCI) serves as the interface between the software part of the system and the hardware (i.e., the device driver). The L2CAP (logical link control and adaptation protocol) layer is above the HCI in the upper stack. Among other functions, it plays a central role in communication between the upper and lower layers of the Bluetooth stack. It keeps track of where data packets come from and where they should go. It is a required part of every Bluetooth system.	12 M
		I I	

(Autonomous) (ISO/IEC - 2700

tified)

MAHARASHTF

Services such as call return, call forwarding, repeat dialing, call block, call tracing and caller ID are provided

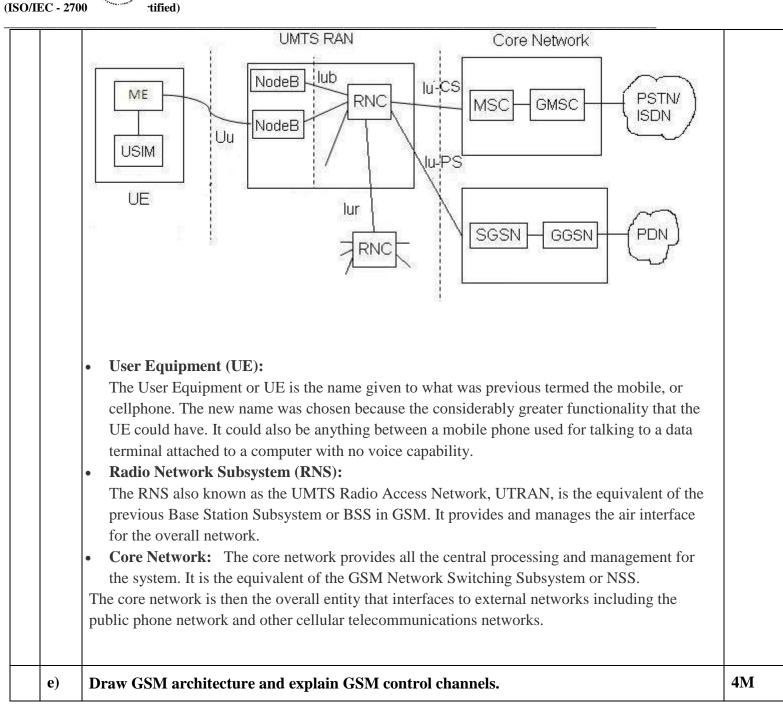
or

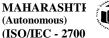
• 800Services:

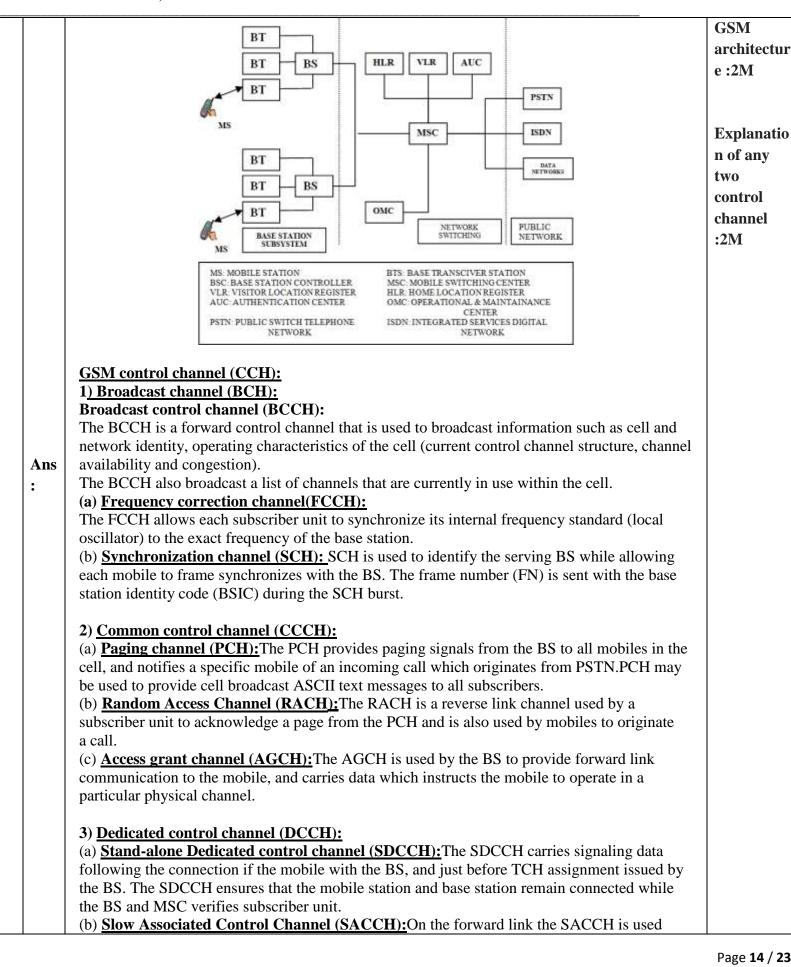
These services were introduced by Bell Systems to provide toll-free access to the calling party and to the services and database which is offered by the private parties.

The costs associated with the processing of the calls are paid by the service subscriber.

The service is offered in two plans known as the 800-NXX plan and the 800 database plan. In the 800-NXX plan the first six digits of an 800 call are used to select the interexchange

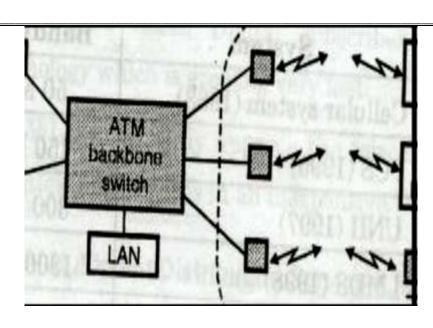

	carrier(IXC).	
	In the 800 database plan, the call is looked up in a database to determine the appropriate carrier and routing information.	
	Alternate Billing Service and Line Information Database(ADB/LIDB):	
	These services use the common channel signaling (CCS) network to enable the calling party to bill a call to a personal number (third party number, calling card or collect, etc.) from any number.	
	Performance of SS7	
	 Performance of signaling network is studied by connection set-up time (response time) or the end-to-end Signaling information transfer time. The delays in the signaling point (SP) and the STP depend on the specific hardware configuration & switching software Congestion control In SS7networks: o With the increase in subscribers it is important to avoid congestion in the signaling network under heavy traffic conditions.SS7 networking protocols provide several congestion control schemes, allowing traffic to avoid failed links & nodes. 	
b)	State the features of 4.5G and 5.6.	4M
b)	State the features of 4.5G and 5.6. Features	4M
b) Ans:	Features 1) Network based on the user experience. 2) Enhanced system performance. 3) Business models, managements and operations. 4) Beam division multiple access (BMDA) technology. 5) Filter band multicarrier (FBMC) multiple access. 6) For computing and achieving low latency, high mobility, high scalability and real time	4M Any 4 feature- 1M each
· · · · · · · · · · · · · · · · · · ·	Features 1) Network based on the user experience. 2) Enhanced system performance. 3) Business models, managements and operations. 4) Beam division multiple access (BMDA) technology. 5) Filter band multicarrier (FBMC) multiple access.	Any 4 feature-


MAHARASHTI (Autonomous) (ISO/IEC - 2700 BOARD OF TECHNICAL EDUCATION tified)


Ans :	 Explanation Authentication Algorithm As: Cipher key Generator Algorithm Bs: Cipher key Generator Algorithm Stress: Signed RESponse Kc: Ciphering Key Ki: Secret authentication key Authentication centre is responsible for all security aspects. The Authentication Centre is responsible for all security aspects. The AUC generates the Ki''s associates them with IMSI and provides for each IMSI a set of triplets consisting of RAND(Random Number), SERS (signed Response), Kc (Cipher key) Authentication center first authenticate the subscriber mobile station and only then MSC provides service. At MS- SIM contains the entire authentication data along with A3 and A8 algorithm and signed response is generated using this. At network side signed response matches then mobile phone authenticated. 	Dig- 2M,expla- 2M
d)	Draw the architecture of UMTS the function of different blocks in UMTS.	4M
Ans :	Draw the architecture of UMTS the function of different blocks in UMTS.	Dig- 2M,expla- 2M

tified)

MAHARASHTI (Autonomous)



power level instruction. On the reverse link the SACCH carries information about the received signal strength. Fast Associated Control Channel (FACCH): FACCH carries urgent messages and contains essentially the same type of information asSDCCH. Q. Attempt any TWO of the following : 12-Tota Marks (a) Draw LMDS and explain it in detail. 6M Ans ILMDS is one of the new proposed services and applications. It is in the early stages of commercialization. 3M Explanation in 1998, 1200MHz of the unused spectrum in the 27-31GHz band was auctioned by the US government to support LMDS. Similar auctioned were held worldwide. Various spectrums were allotted for the LMDS. Most of these allocations share the frequencies with the teledesic band approved by the ITU for broadband satellite systems. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is a site own drawbacks. LMDS is a brand new, and an uproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is a brand new, and an unproven system. The equipment required for LMDS are miller wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network. The LLC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backhone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS has its different			
received signal strength. Fast Associated Control Channel (FACCH): FACCH carries urgent messages and contains essentially the same type of information asSDCCH. 12-Tote sesentially the same type of information asSDCCH. Q . Attempt any <u>TWO</u> of the following : 12-Tote Marks (a) Draw LMDS and explain it in detail. 6M Ans . . LMDS is one of the new proposed services and applications. It is in the early stages of commercialization. . In 1998, 1200MHz of the unused spectrum in the 27-31GHz band was auctioned by the US government to support LMDS. . Similar auctioned were held worldwide. Various spectrums were allotted for the LMDS. . Most of these allocations share the frequencies with the teledesic band approved by the TTU for broadband satellie systems. . The teledesic band was originally established for the Motorola iridium system. LMDS. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 55000 full duplex voice channels. . The US LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. . The most important application of LMDS is the Local Excha		to send slow but regularly changing control information to the mobile such a transmit	
East Associated Control Channel (FACCH): FACCH carries urgent messages and contains essentially the same type of information asSDCCH. 12-Tote Marks Q Attempt any TWO of the following : 12-Tote Marks (a) Draw LMDS and explain it in detail. 6M Ans ILMDS is one of the new proposed services and applications. It is in the early stages of commercialization. 3M Explana In 1998, 1200MHz of the unused spectrum in the 27-31GHz band was auctioned by the US government to support LMDS. Similar auctioned were held worldwide. Various spectrums were allotted for the LMDS. Most of these allocations share the frequencies with the teledesic band approved by the ITU for broadband satellite systems. The teledesic band was originally established for the Motorola iridium system. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the		-	
essentially the same type of information asSDCCH. 12-Tote Marks Q.5 Attempt any TWO_ of the following : 12-Tote Marks (a) Draw LMDS and explain it in detail. 6M Ans ILMDS is one of the new proposed services and applications. It is in the early stages of commercialization. 3M Explanation In 1998, 1200MHz of the unused spectrum in the 27-31GHz band was auctioned by the US government to support LMDS. Similar auctioned were held worldwide. Various spectrums were allotted for the LMDS. Most of these allocations share the frequencies with the teledesic band approved by the ITU for broadband satellite systems. The teledesic band was originally established for the Motorola iridium system. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. I shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS hand is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits p			
Q Attempt any TWO of the following : 12-Tota Marks (a) Draw LMDS and explain it in detail. 6M Ans 3M Explain it in detail. 6M LMDS is one of the new proposed services and applications. It is in the early stages of commercialization. 3M Explanation in the 27-31GHz band was auctioned by the US government to support LMDS. Similar auctioned were held worldwide. Various spectrums were allotted for the LMDS. Most of these allocations share the frequencies with the teledesic band approved by the ITU for broadband satellite systems. The teledesic band was originally established for the Motorola iridium system. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS hand is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are cosity. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backhone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the			
.5 Marks (a) Draw LMDS and explain it in detail. 6M Ans 3M Explanation of the new proposed services and applications. It is in the early stages of commercialization. 3M Explanation of the unused spectrum in the 27-31GHz band was auctioned by the US government to support LMDS. Similar auctioned were held worldwide. Various spectrums were allotted for the LMDS. Most of these allocations share the frequencies with the teledesic band approved by the ITU for broadband satellite systems. The teledesic band was originally established for the Motorola iridium system. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 650000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. <		essentially the same type of information asSDCCH.	
.5 Marks (a) Draw LMDS and explain it in detail. 6M Ans 3M Explanation of the new proposed services and applications. It is in the early stages of commercialization. 3M Explanation of the unused spectrum in the 27-31GHz band was auctioned by the US government to support LMDS. Similar auctioned were held worldwide. Various spectrums were allotted for the LMDS. Most of these allocations share the frequencies with the teledesic band approved by the ITU for broadband satellite systems. The teledesic band was originally established for the Motorola iridium system. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 650000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. <)	Attempt any TWO of the following :	12-Total
(a) Draw LMDS and explain it in detail. 6M Ans 3M Explanation of the new proposed services and applications. It is in the early stages of commercialization. 3M Explanation of the new proposed services and applications. It is in the early stages of commercialization. In 1998, 1200MHz of the unused spectrum in the 27-31GHz band was auctioned by the US government to support LMDS. Similar auctioned were held worldwide. Various spectrums were allotted for the LMDS. Most of these allocations share the frequencies with the teledesic band approved by the ITU for broadband satellite systems. The teledesic band was originally established for the Motorola iridium system. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network.	-		
Ans 3M Exp Ans Import LMDS is one of the new proposed services and applications. It is in the early stages of commercialization. In 1998, 1200MHz of the unused spectrum in the 27-31GHz band was auctioned by the US government to support LMDS. Similar auctioned were held worldwide. Various spectrums were allotted for the LMDS. Most of these allocations share the frequencies with the teledesic band approved by the ITU for broadband satellite systems. The teledesic band was originally established for the Motorola iridium system. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 – 29.25 GHz and 31.075 – 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backhone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. <th>_</th> <th></th> <th></th>	_		
 LMDS is one of the new proposed services and applications. It is in the early stages of commercialization. In 1998, 1200MHz of the unused spectrum in the 27-31GHz band was auctioned by the US government to support LMDS. Similar auctioned were held worldwide. Various spectrums were allotted for the LMDS. Most of these allocations share the frequencies with the teledesic band approved by the ITU for broadband satellite systems. The teledesic band was originally established for the Motorola iridium system. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 	(a)	Draw LMDS and explain it in detail.	6M
 commercialization. In 1998, 1200MHz of the unused spectrum in the 27-31GHz band was auctioned by the US government to support LMDS. Similar auctioned were held worldwide. Various spectrums were allotted for the LMDS. Most of these allocations share the frequencies with the teledesic band approved by the ITU for broadband satellite systems. The teledesic band was originally established for the Motorola iridium system. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 	An	s	3M Explan
 commercialization. In 1998, 1200MHz of the unused spectrum in the 27-31GHz band was auctioned by the US government to support LMDS. Similar auctioned were held worldwide. Various spectrums were allotted for the LMDS. Most of these allocations share the frequencies with the teledesic band approved by the ITU for broadband satellite systems. The teledesic band was originally established for the Motorola iridium system. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 			
In 1998, 1200MHz of the unused spectrum in the 27-31GHz band was auctioned by the US government to support LMDS. Similar auctioned were held worldwide. Various spectrums were allotted for the LMDS. Most of these allocations share the frequencies with the teledesic band approved by the ITU for broadband satellite systems. The teledesic band was originally established for the Motorola iridium system. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 – 29.25 GHz and 31.075 – 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver.		LMDS is one of the new proposed services and applications. It is in the early stages of	
 government to support LMDS. Similar auctioned were held worldwide. Various spectrums were allotted for the LMDS. Most of these allocations share the frequencies with the teledesic band approved by the ITU for broadband satellite systems. The teledesic band was originally established for the Motorola iridium system. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The other problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 		commercialization.	
 Similar auctioned were held worldwide. Various spectrums were allotted for the LMDS. Most of these allocations share the frequencies with the teledesic band approved by the ITU for broadband satellite systems. The teledesic band was originally established for the Motorola iridium system. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The other problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 		In 1998, 1200MHz of the unused spectrum in the 27-31GHz band was auctioned by the US	
 Most of these allocations share the frequencies with the teledesic band approved by the ITU for broadband satellite systems. The teledesic band was originally established for the Motorola iridium system. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The onst important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 		government to support LMDS.	
 Most of these allocations share the frequencies with the teledesic band approved by the ITU for broadband satellite systems. The teledesic band was originally established for the Motorola iridium system. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The onst important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 		Similar auctioned were held worldwide. Various spectrums were allotted for the LMDS.	
 broadband satellite systems. The teledesic band was originally established for the Motorola iridium system. LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 			
LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver.M			
 wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS. The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 – 29.25 GHz and 31.075 – 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 		The teledesic band was originally established for the Motorola iridium system.	
The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000 full duplex voice channels. The US LMDS band is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz. However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 3M Diagram		LMDS is a fixed wireless system. The table given shows the total spectrum bandwidth of various	
full duplex voice channels.The US LMDS band is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz.However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. Theequipment required for LMDS are millimeter wave equipment which are costly.The most important application of LMDS is the Local Exchange Carrier (LEC) network. It isshown in the figure.In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) orSONET (synchronous optical network) backbone switch.Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to itsown private network.The LMDS thus provides wireless broadband connectivity to the customers without using the cables.Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful.The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 3M Diagram		wireless systems in the US. It shows that the BW of 1300MHz has been allotted for LMDS.	
full duplex voice channels.The US LMDS band is 27.5 - 28.35 GHz, 29.1 - 29.25 GHz and 31.075 - 31.225 GHz.However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. Theequipment required for LMDS are millimeter wave equipment which are costly.The most important application of LMDS is the Local Exchange Carrier (LEC) network. It isshown in the figure.In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) orSONET (synchronous optical network) backbone switch.Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to itsown private network.The LMDS thus provides wireless broadband connectivity to the customers without using the cables.Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful.The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 3M Diagram		The 1300MHz bandwidth of LMDS is sufficient to provide more than 200TV channels or 65000	
 However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 		_	
 However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 		The US LMDS band is 27.5 - 28.35 GHz, 29.1 – 29.25 GHz and 31.075 – 31.225 GHz.	
 equipment required for LMDS are millimeter wave equipment which are costly. The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 		However LMDS has its own drawbacks. LMDS is a brand new, and an unproven system. The	
 The most important application of LMDS is the Local Exchange Carrier (LEC) network. It is shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 			
 shown in the figure. In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 			
In this network the LEC uses a very wide bandwidth ATM (asynchronous transfer mode) or SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 3M			
 SONET (synchronous optical network) backbone switch. Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 			
 Such a switch can connect hundreds of megabits per second traffic to the internet, PSTN, or to its own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 			
 own private network. The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 			
The LMDS thus provides wireless broadband connectivity to the customers without using the cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 3M			
 cables. Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 3M Diagram 			
Difficulties: The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. 3M Diagram			
The most important problem for LMDS of WLL is that of line of sight (LOS). If the antennas can be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver.			
be seen, then only the transmission is successful. The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver. Diagram			
The other problem is that rain, snow and hail can create large changes in the channel gain between the transmitter and receiver.			
between the transmitter and receiver.			
Diagray			
			Diagram

MAHARASHTF (Autonomous) (ISO/IEC - 2700

tified)

OR

LMDS: Local multi-point distribution system.

It is a broadband wireless point to multipoint communication system that provides reliable digital two-way voice, data and Internet services. The term "Local" indicates that the signals range limit. "Multipoint" indicates a broadcast signal from the subscribers, the term "distribution" defines the wide range of data that can be transmitted, data ranging anywhere from voice, or video to Internet and video traffic.

It provides high capacity point to multipoint data access that is less investment intensive.

Advantages:

- Lower entry and deployment cost.
- Ease and speed of deployment.
- Fast realization of revenue.
- Uses low powered high frequency (25-31 GHz) signals over a short distance.

Four parts in LMDS are:

- 1. NOC (network operation center).
- 2. Fiber based infrastructure.
- 3. Base station.
- 4. Customer premise equipment.

3M Diagram

3M

n

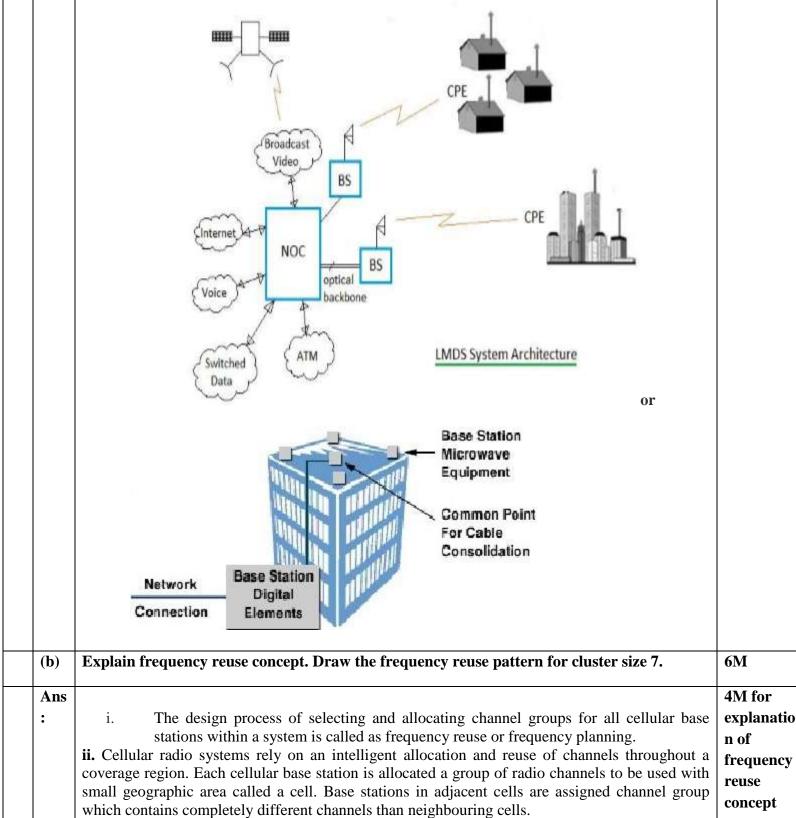
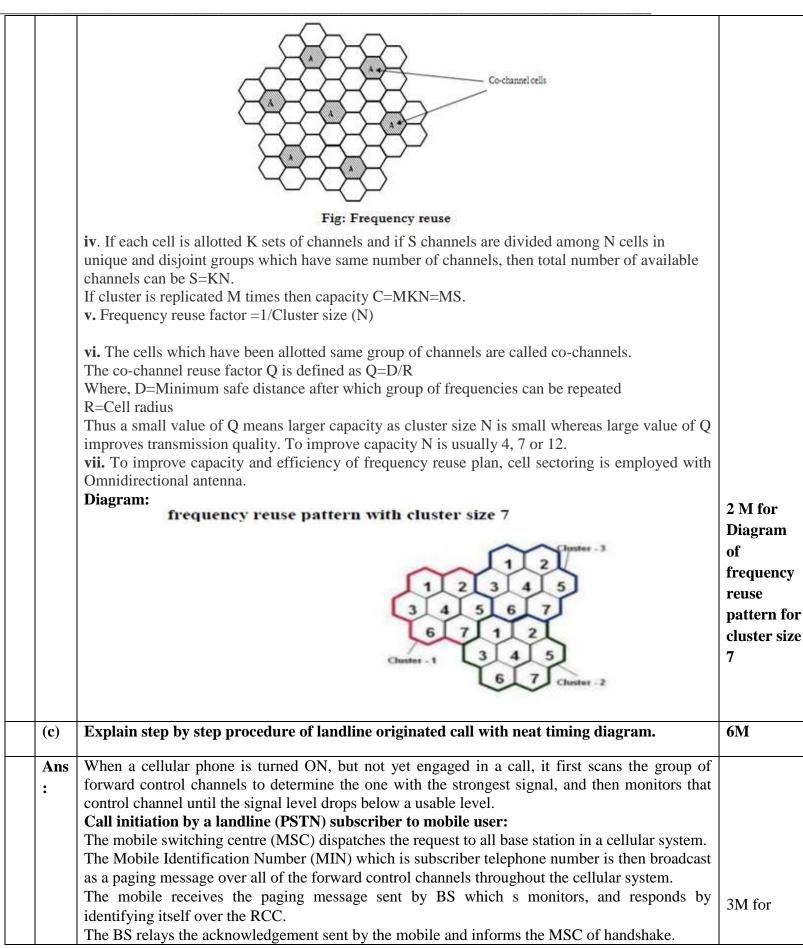

Explanatio

Diagram:

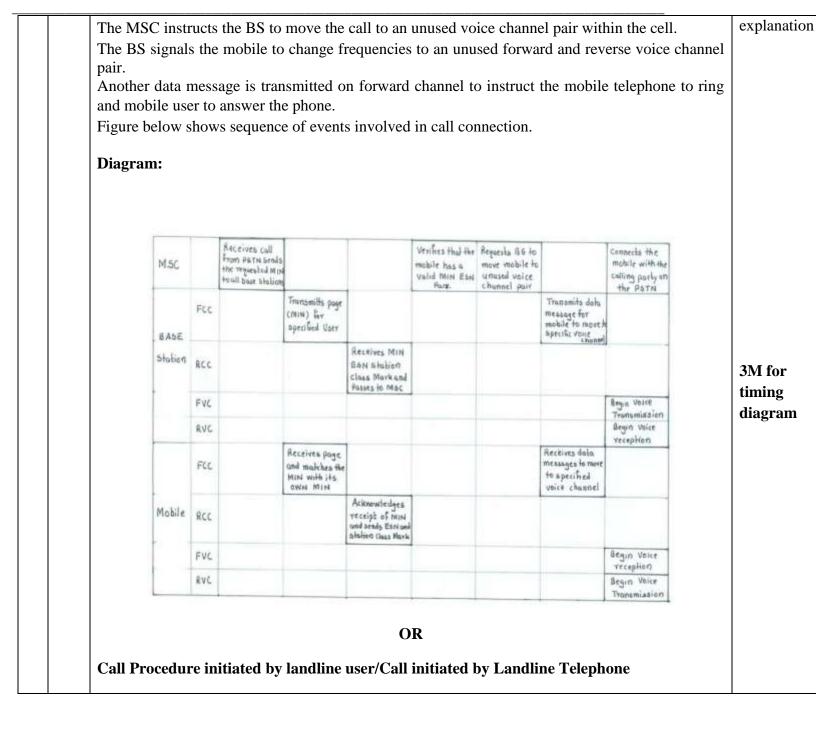
tified)

(Autonomous) (ISO/IEC - 2700

MAHARASHTE




iii. By limiting the coverage area to boundaries of a cell, same group of channels may be used to cover different cells that are separated from each other by distances large enough to keep interference levels within tolerance limits.


·tified)

MAHARASHTF

(Autonomous) (ISO/IEC - 2700

		r		Receivancel	r							
		х	asc.	from PSTN, Sends the requested MIN to all bace stations.			Verifies that the mobile has a valid MIN ESN pair.	Requestes BS to move mobils to unused voice channel pair.		Connects the mobile with the calling party on the PSTN		
			FOC		Transmits page(MIN) for specified user				Transmits data message for mobile to move to specific voice channel			
			ASE ROC			Receives MIN, ESN Station Olass mark & passes to MSC.						
			FVC							Begin volce transmission		
			R4.K4							Begin Voice reception		
			FCC		Receives page & matches MIN with ha own MIN				Receives data messages to move to apeortied voice channel			
		ME	BILE			Acknowledges receipt of MIN & sends ESN & Station Class Mark						
			FVC							Begin Voice reception		
		-	RWC		_					Begin volce transmission		
		Timia	g diagram illus	trating how a cal				andline u	ser			
					20		1					
Q .6		Attempt any	<u>TWO</u> 0	f the foll	owing:							12 Total Marks
	(a)	Identify the b	olock di		Transmite A Recci v B Cond	kes :	Have	aterro	gure No.	2.		6 M
	Ans	Block Diagram	n is of	Mobile U	nit.	Fig. No.	2		V.1	9		2M for
	:	Block A is Fr	equenc	y Synthes	sizer							Identificati
		Frequency Sy A frequency s					or generat	ing any o	f a range	of freque	ncies from	on of block diagram
		a single fixed	time bas	se or oscil						or neque		-
				d mixer. tor provid	les referei	nce for th	e PLLs.					1M each

		RAM and ROM a generates control s MTSO send serial frequency and tran MTSO monitors th monitors transmitte	master control circuit for a ce and additional circuit used f ignal for the transmitter and re data stream at 10Kbps the cel smitter power. e received cell signal strength	Ilular radio. It is made up of microproc for interpreting signals from MSC an eceiver. I site to radio to control the transmit and at the cellular radio by RSSI signal, an smitted back to cell site and MTSO.	d BS and on of block A & B d receive 1 M for
(b)	State the features	of UMTS and give UMTS a	ir interface specification.	6M
		packet-based trans megabits per secon 1. Universal Mobil competitive open a 2. UMTS offers a depend on the loca standard. Once UN the Internet where internet via combir 3. A packet-switc connection is alway 4. UMTS also ma calling plans. For asymmetric bandw 5. The higher band 6. UMTS may allo user can have the	Mobile Telecommunications mission of text, digitized vo d (Mbps). e Telecommunications Syste- ir-interface standard for 3G w consistent set of services to tion. UMTS is based on the C ATS is available, computer an ver they travel will have the nation of terrestrial wireless an hed connection that uses th ys available. tkes it possible to provide r instance, users can choos idth options. width of UMTS also enables ow the Virtual Home Environ a same services to either at nsparent terrestrial and satellit	mobile computer and phone users, wh Global System for Mobile (GSM) comm and phone users can be continuously co- same set of capabilities. Users will get and satellite transmissions. Internet Protocol (IP) that provides new services like alternative billing m e to pay-per-bit, pay-per-session, fla- other new services like video conference nment (VHE) to fully develop, where home, in the office or in the field	UMTS as a blich is not nunication onnected to t access to s a virtual nethods or at rate, or cing. a roaming
		SR.No	Parameters	Specifications	4N4 6
		1	Frequency spectrum	Uplink,1920MHz-1980MHz,	4M for UMTS air
		2	Channel bandwidth	5MHz	interface specificatio
		3	Chip rate	3.84 Mcps	ns

		4									
		_	Duplexin	g technique	FDD and TDD modes						
	5		Modulati	on scheme	Direct sequence CDMA and QPS	K					
		6	Wioduladi		Direct sequence CDWIA and QLS						
			Frame ler	ngth	10 ms frame with 15 time slots						
		7	G I								
		8	Coding te	echnique	Orthogonal Variable Spreading						
		0	Service ty	ype	Multi-rate and multi-service						
(c)	Give the clas	sificati		1	e the application of RFID.		6M				
Ans	Classification	of DE	ID Toget				2M for				
Alls	Classification	1 01 KF	ID Tags:				classific				
•		CLA	SSIFICATION	1	UNCTIONAL DESCRIPTION		on of				
					containing only the Electronic		RFID ta				
		Pass	tive tity Tag		e (EPC [®]) in an unalterable form or transmission error detection.						
		Idel	itity rag		d to as a "license plate."						
				Broad categ	ory that includes any tag with						
		Pass	ive		functions over and above the elementary tag. Examples of such functions or features						
		Fund	ctional Tag		Writable memory, sensors, and						
				encryption.							
		Sam	i-Passive	Any tag that							
		Tag									
		Acti	ve Tag	Any tag whe energy for t	re a battery is the sole source of he tag.						
		(D D	D								
	Applications		D:								
	i. Automotive		have added	security and c	onvenience to automobiles by using	REID	4M for				
				•		KI ID	Applica				
	 technology for anti-theft immobilizers and passive entry systems. Some auto manufacturers use RFID systems to move cars through an assembly line. At 										
	each successive stage of production, the RFID tag tells the computers what the next step										
	of the automated assembly is.										
	ii. Animal tracking:										
	 Donoh 	 Ranchers and livestock producers use RFID technology to meet export regulations and optimize livestock value. 									
			-		 Wild animals are tracked in ecological studies, and many pets who are tagged are returned 						
	optim	ize live	stock value.	in ecological	studies, and many pets who are tagge	ed are returned					
	• Wild a	ize live	stock value.	in ecological	studies, and many pets who are tagge	ed are returned					
	 optimit Wild a to their Thus a 	ize live animals r owne a tag ca	stock value. are tracked rs.	-	studies, and many pets who are tagge ple as a pet owner's name and addre						
	• Wild a to thei • Thus a iii . Assets trace	ize live animals r owne a tag ca cking:	stock value. are tracked rs. n carry info	rmation as sim	ple as a pet owner's name and addre	ess.					
	optimi • Wild a to thei • Thus a iii. Assets trac • Hospi	ize live animals r owne a tag ca cking: tals and	stock value. are tracked rs. n carry infor l pharmacies	rmation as sim	ple as a pet owner's name and addre roduct accountability legislation with	ess.					
	optimi • Wild a to thei • Thus a iii. Assets trac • Hospi	ize live animals r owne a tag ca cking: tals and es limit	stock value. are tracked rs. n carry infor l pharmacies t theft and ke	rmation as sim	ple as a pet owner's name and addre	ess.					
	 optimi Wild a to their Thus a iii. Assets trace Hospi librari iv. Contactles 	ize live animals r owne a tag ca cking: tals and es limit s comn	stock value. are tracked rs. n carry infor l pharmacies t theft and ke nerce:	rmation as sim s meet tough p eep books in c	ple as a pet owner's name and addre roduct accountability legislation with	ess. h RFID;					

) tified)

	boost revenue per customer.	
v .	v. Supply chain:	
	• Wal-Mart, Target, Best Buy, and other retailers have discovered that RFID technology can keep inventories at the optimal level, reduce out of stock losses, limit shoplifting, and speed customers through check-out lines.	
vi	. Replacement for bar codes:	
	• RFID can serve a lot of advantages by replacing bar codes.	
	• One of the key differences between RFID and bar code technology is RFID eliminates the need of line-of-sight reading that bar coding depends on.	
	• Also, RFID scanning can be done at greater distances than bar code scanning. High frequency RFID systems (850–950 MHz, 2.4–2.5 GHz) offer transmission ranges more than 90 feet.	
	• Barcodes are fixed at the time of printing and can be rendered useless by defacement or smudging.	
	• Bar codes can be spoofed or easily defeated by any malicious individual having a laser printer at their disposal.	
N	ote: marks to be credited if classification is given on frequency bases.	