

V2V EDTECH LLP

Online Coaching at an Affordable Price.

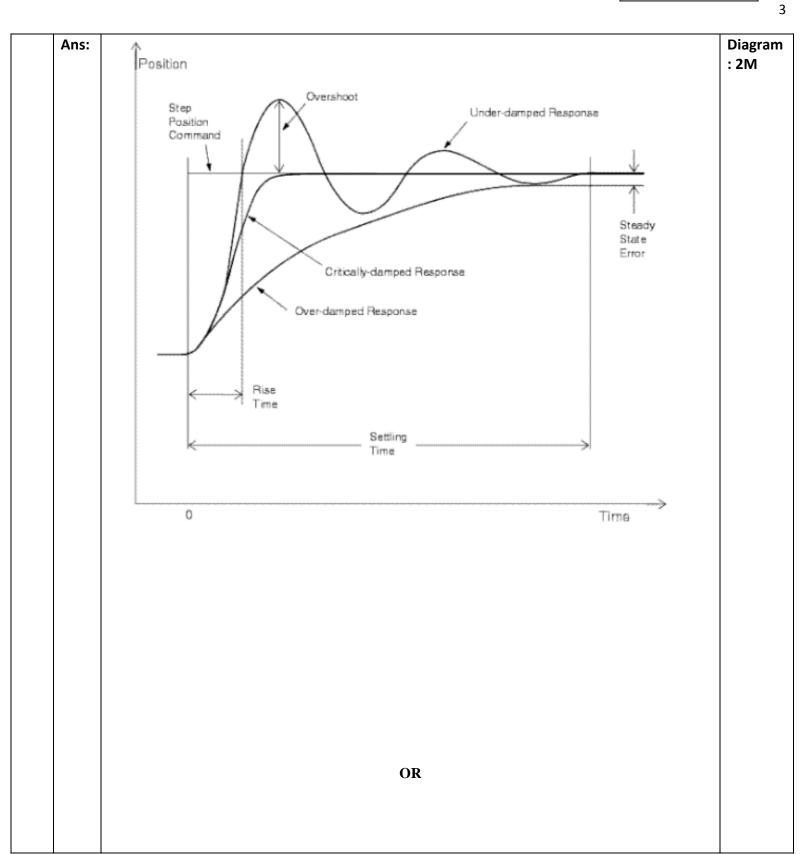
OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
- **► V2V EdTech LLP**
- w2vedtech.com
- o v2vedtech

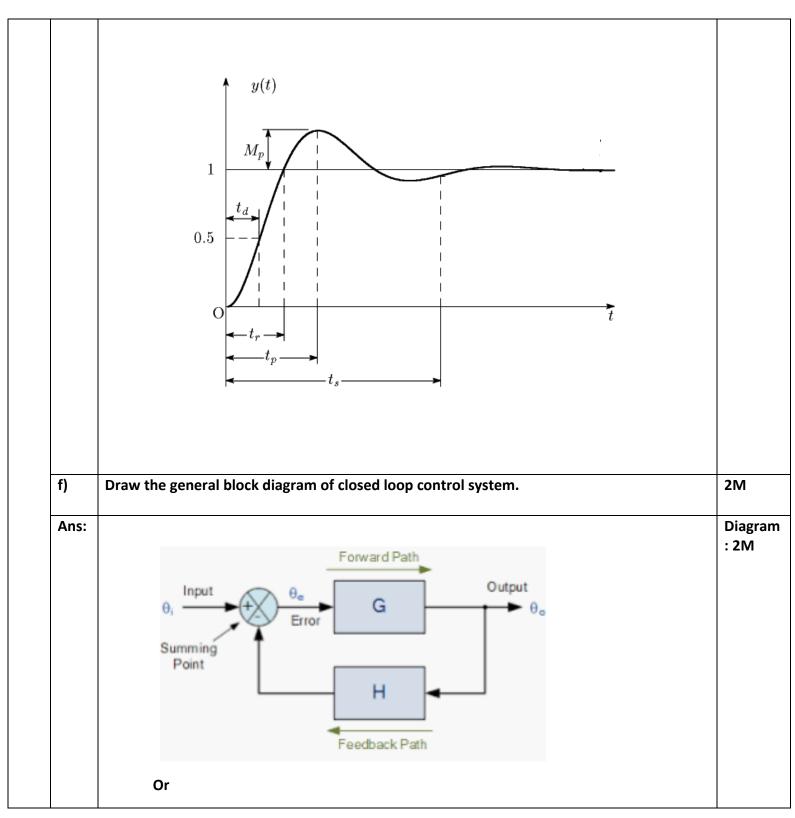
Subject Name: Control System and PLC Model Answer Subject Code:

22531

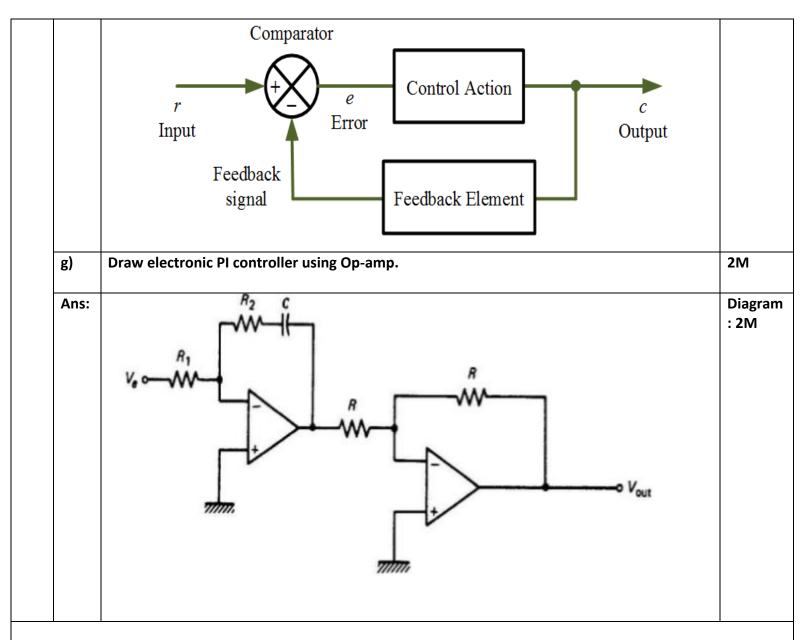
1


Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

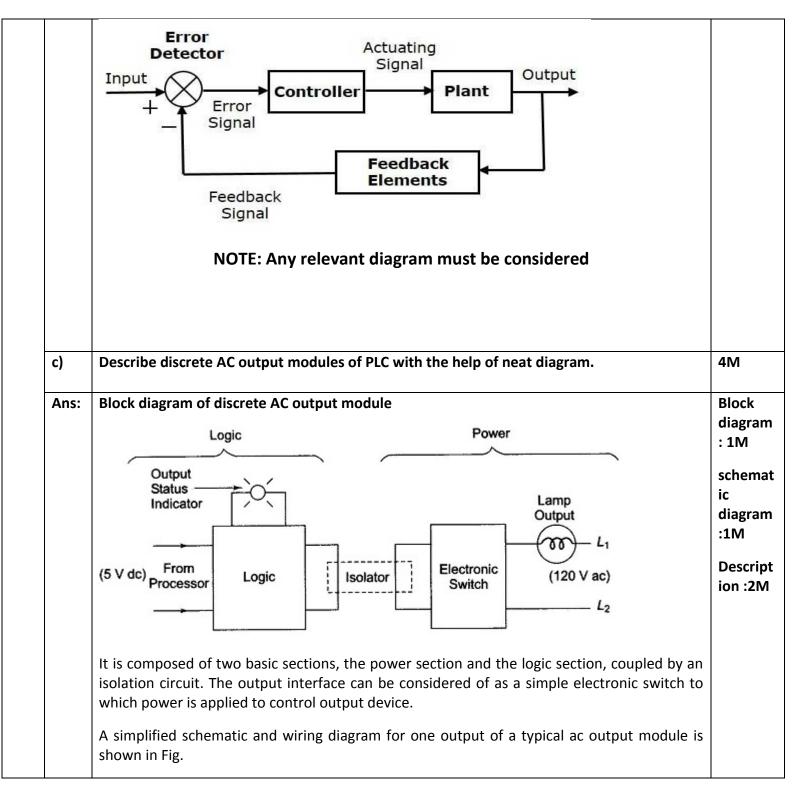

Q. No.	Sub Q. N.	Answers	Marking Scheme
1	(A)	Attempt any FIVE of the following:	10- Total Marks
	(a)	List any four names of PLC programming languages.	2M
	Ans:	 Ladder diagram programming Instruction list programming Structured text programming Function block diagram programming Sequential function charts 	Any four: 2M
	(b)	Define transient response and steady state response for any system.	2M
	Ans:	Transient response: The output variation during the time, it takes to achieve its final value is called transient response.	Definitio n : 1M each
		Steady state response: It is that part of the time response which remains after complete transient response vanishes from the system output	

22531


	OR	
	It is defined as the response of the system as time approaches infinity from the time at	
	which transient response completely dies out.	
(c)	Calculate the order of following system.	2M
	$G(s) = \frac{(S+2)(S+5)}{S(S+3)(S+4)}$	
Ans:	$G(s) = \frac{(S+2)(S+5)}{S(S+3)(S+4)}$	Order 2M
	G(s) = $\frac{(S+2)(S+5)}{(S+4)(S^2+3S)}$	
	G(s) = $\frac{(S+2)(S+5)}{(S^3+7S^2+12S)}$	
	Highest power of 'S' in denominator is 3	
	Therefore, Order of the system is 3.	
(d)	List two inputs and two output devices of PLC.	2M
Ans:	Input devices:	Any tv
	1) Mechanical switches	inputs
	2) Proximity switches	1M
	3) Photoelectric switches	
	4) Encoders	
	·,	Any tw
	Output devices:	output
	1) Contactors	: 1M
	1) Contactors 2) Relays	
	3) Motors	
	4) Lights	

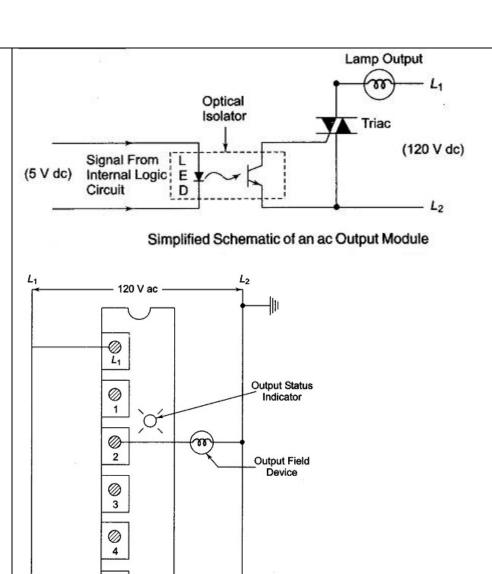
22531

22531



Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
2		Attempt any THREE of the following:	12- Total Marks
	a)	State any four block diagram reduction rules with neat diagram.	4M

22531


Ans:	Manipulation	Original Block Diagram	Equivalent Block Diagram	Any for rules :
	Combining Blocks in Cascade	$X \longrightarrow G_1 \longrightarrow G_2 \longrightarrow Y$	$X \longrightarrow G_1G_2 \longrightarrow Y$	4M
	Combining Blocks in Parallel; or Eliminating a Forward Loop	$X \longrightarrow G_1 \longrightarrow Y$	$X \longrightarrow G_1 \pm G_2 \longrightarrow Y$	
	Moving a pickoff point behind a block	$u \longrightarrow G \longrightarrow y$	$u \longrightarrow G \longrightarrow y$ $u \longleftarrow 1/G \longrightarrow y$	
	Moving a pickoff point ahead of a block	$u \longrightarrow G \longrightarrow y$	$u \longrightarrow G \longrightarrow y$ $y \longrightarrow G$	
	Moving a summing point behind a block		$u_1 \longrightarrow G \longrightarrow y$ $u_2 \longrightarrow G$	
	Moving a summing point ahead of a block		$u_1 \longrightarrow G \longrightarrow y$ $1/G \longrightarrow u_2$	
			$u = G_2 - G_1 - G_1 - Y$	
b)	Draw neat block diagram	of process control system.		4M
Ans:	E(t) $E(t)$ $E(t)$ $E(t)$	mplifier Actuator	Process or plant	Block
	Automatic controller	Sensor	•	Diagra -4M
1				

22531

22531

ŏ

Typical Output Module Wiring Connection

Output Module

Terminal Board

Module Blown

Fuse Indicator

As part of its normal operation, the processor sets the output states according to the logic program. When the processor calls for an output, a voltage is applied across the LED of the isolator. The LED then emits light which switches on the phototransistor into conduction. This, in turn, switches a semiconductor switch such as Triac into conduction which turns on the lamp. Since the triac conducts in either direction, the output to lamp is ac.

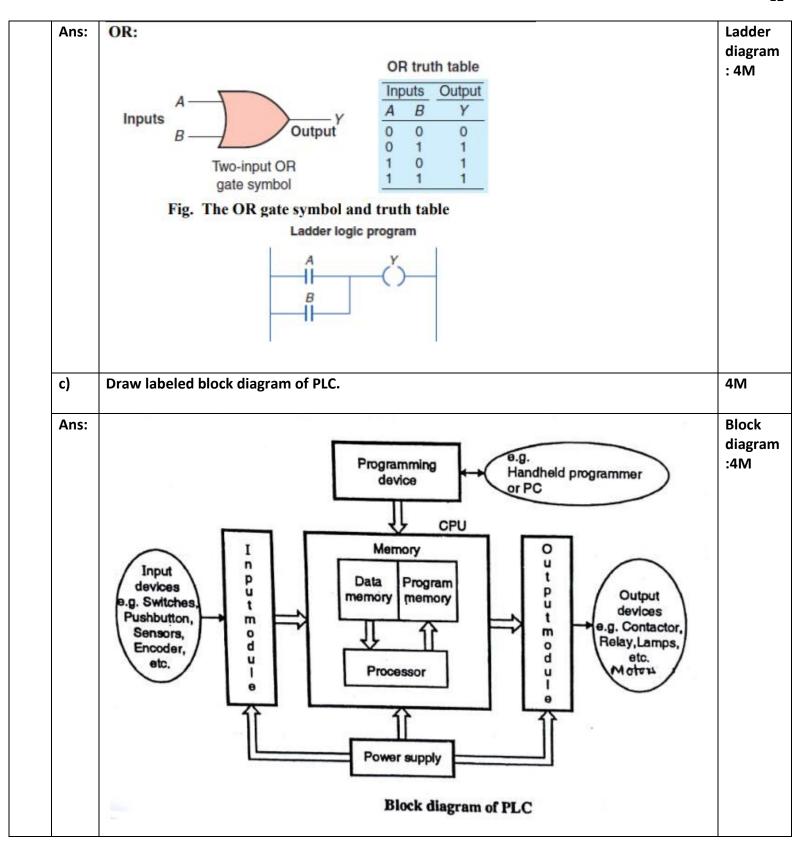
The triac rather than having ON and OFF status, actually has low and high resistance levels respectively. In its OFF state (high resistance) a small leakage current of a few mA still flows

22531

d) Illusti	rate the steps for PLC installation.	4M
Ans:	Wiring ducts PLC PLC	Steps: 4M
2)	Enclosure: It is a metal or non- metal cabinet to fix the PLC and its supporting devices. It provides enough space between PLC and other components for air circulation to maintain temperature between 0 ° to 55° C. if the temperature exceeds 55°C the provide cooling fan. Install PLC away from high voltage equipments. Disconnect device: The enclosure should have power disconnect. So that, when required the PLC can be worked on with power OFF. MCR: Master control relay is used to interrupt power to the I/O rack in the event of a	

22531

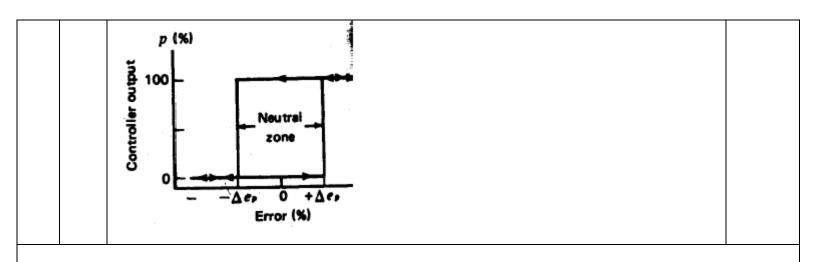
5)	Provides physical isolation from the main power distribution. When PLC is operated in noise polluted environment, then noise suppressors should be used.	
6)	Proper grounding is an important measure in PLC installation.	


Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any THREE of the following :	12- Total Marks
	a)	Discuss the special cases of Routh's criterion.	4M

Subject Name: Control System and PLC <u>Model Answer</u> Subject Code:

22531

case: 2M
21VI
ĺ


22531

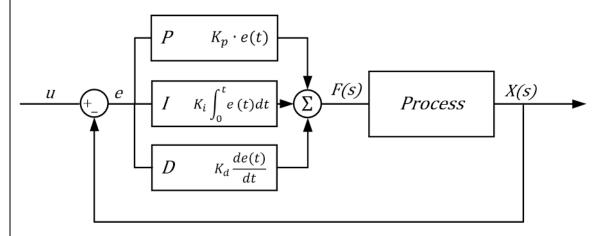
22531

d)	Elaborate ON – OFF controller with suitable example. State significance of neutral zone.	4M
Ans:	ON – OFF controller: ON – OFF controller has only two positions either it is fully closed or fully open. This control element does not operate at any intermediate position, i.e. partly open or partly closed position. The control system made for controlling such elements is known as on off control theory. In this control system, when process variable changes and crosses certain preset level, the output valve of the system is suddenly fully opened and gives 100 % output. Generally in on off control system, the output causes change in process variable. Hence due to effect of output, the process variable again starts changing but in reverse direction. During this change, when process variable crosses certain predetermined level, the output valve of the system is immediately closed and output is suddenly reduced to 0%. As there is no output, the process variable again starts changing in its normal direction. When it crosses the preset level, the output valve of the system is again fully open to give 100% output. This cycle of closing and opening of output valve continues till the said on-off control system is in operation. A common example of on-off control is the temperature control in a domestic heating system. When the temperature is below the thermostat set point the heating system is switched on and when the temperature is above the set point the heating switches off.	Explana ion : 2M Significa nce: 2M
	Significance of Neutral zone :	
	In any practical implementation of the two – position controller, there is an overlap as ep increases through zero or decreases through zero. In this span, no change in controller output occurs. It is called Neutral zone. Fig shows p versus ep for ON-OFF Controller. Until an increasing error changes by Δ ep above zero, the controller output will not change state. In decreasing it must fall Δ ep below zero before the controller changes to the 0% rating.	

22531

Q. No.	Sub Q. N.		Answers		Marking Scheme
4		Attem	pt any THREE of the following :		12- Total Marks
	(a)	Classif	y Fixed and Modular PLC.		4M
	Ans:	Sr. No	Fixed PLC	Modular PLC	Any four points :4M
		1	It is also known as an integrated PLC or Compact PLC.	It is also known as rack-mounted units.	
		2	In Fixed PLC, the number of inputs and outputs are fixed because I/O capabilities are decided by the manufacturer but not by the user.	In Modular PLC, the number of inputs and outputs are not fixed. Inputs outputs can be added to the modular PLC systems by the user.	
		3	It has inputs and outputs modular fitted with CPU.	In this PLC, several components are fitted on chassis or rack or bus with different slots.	
		4	Fixed PLC is not easily repaired.	Modular PLC is easy to maintain and repair as compared to fixed PLC.	

22531

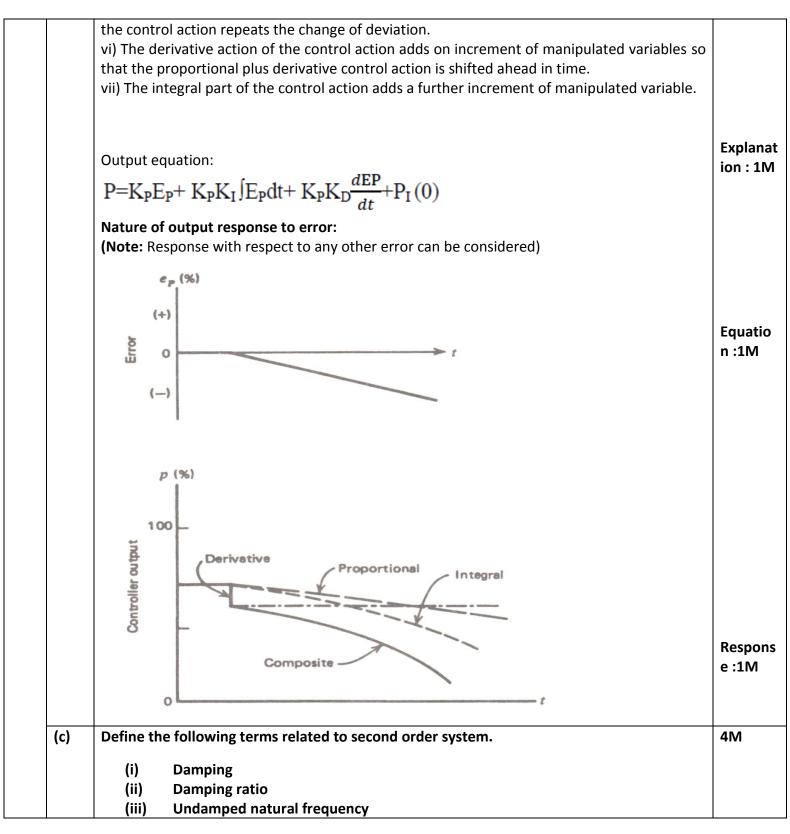

15

(b)	Doscri	be PID controller with neat diagram, output e	guation, and response	4M
	8	It is an economic model.	It is costlier than Fixed PLC.	_
	7	It is smaller in size.	It occurs in a large size with i/o connectivity, power supply, computing capabilities, etc.	
	6	It is useful for the smaller applications and most suitable for the domestic purpose.	It is used for industrial purpose and also for future industrial expansion and growth.	
	5	It has fewer capabilities to store data/information.	It has more memory and capabilities to store more data.	

(a)

PID controller Ans:

Diagram : 2M



Note: Any other relevant diagram should be considered

Explanation:

- i) The combination of proportional control action, derivative control action and integral control action is called as PID controller action.
- ii) The combined action has advantage of the three individual control actions. The proportional controller stabilizes gain but produces steady state error.
- iii) The integral action reduces the steady state error. The derivative action reduces the rate of change of error.
- iv) PID controller is a band pass or band attenuate filter, depending on the values of the controller parameters.
- v) The response characteristics of PID controller is shown in figure. The proportional part of

22531

22531

	(iv) Damped frequency	
Ans:	(i) Damping: Every system has tendency to oppose the oscillatory behavior of the system which is called as damping.	Definition
	(ii) Damping ratio: The damping is measured by a factor or a ratio called damping ratio of the system	each
	(iii) Undamped natural frequency: Natural frequency is basically the frequency with which any oscillations takes place with no damping	
	(iv) Damped frequency: It is the frequency at which a Damped system oscillates when not subjected to a continuous or repeated external force. It is given by formula:	
	$\boldsymbol{\omega_d} = \boldsymbol{\omega_n}\sqrt{1-\zeta^2}$	
	$\zeta = damping\ ratio$	
	$\omega_d=damped\ frequency$	
	$\omega_n = natural frequency$	
(d)	Describe linearity property and change of scale Property of Laplace Transform.	4M
Ans:	Linearity Property :	Linearity
	The linearity property of the Laplace Transform states:	property : 2M
	$a \cdot f(t) + b \cdot g(t) \leftarrow \mathcal{L} \rightarrow a \cdot F(s) + b \cdot G(s)$. 2101
	This is easily proven from the definition of the Laplace Transform	
	$\mathcal{L}(a \cdot f(t) + b \cdot g(t)) = \int_{0^{-}}^{\infty} (a \cdot f(t) + b \cdot g(t)) e^{-st} dt$	Change
	$a \int_{-\infty}^{\infty} f(x) a^{-st} dx$, $a \int_{-\infty}^{\infty} a(x) a^{-st} dx$	of scale
	$= a \int_{0^{-}}^{\infty} f(t) e^{-st} dt + b \int_{0^{-}}^{\infty} g(t) e^{-st} dt$	propert

22531

Ans:
(e)

Subject Name: Control System and PLC Model Answer Subject Code:

22531

19

Symbol :

When the contact is switched ON, the circuit is completed and current flows through the circuit.

2. Normally Close (XIO):

Symbol:

When the contact is switched ON, the circuit is broken and the current flowing through the circuit stops.

3. One Shot Instruction (OSR):

Symbol:

____(osr)____

If the conditions of rung before OSR instruction are true or satisfied then OSR instruction is true for one scan cycle and also triggers o/even if rung conditions are still true.

4. Output Instruction:

Symbol:

___()__

It becomes ON if the process finds true path in the rung containing this

Q.

No.

5.

Sub

Q. N.

Attempt any TWO of the following:

WINTER-19 EXAMINATION Subject Name: Control System and PLC <u>Model Answer</u> Subject Code:

22531

20

Marking

Scheme

12- Total

	o/p otherwise it remains OFF.	
5.	Output latch instruction(L):	
	Symbol :(L)	
	It is a latch type coil of the output. It is set to 1 when input becomes true for one input scan output stay ON even if input goes false.	
6.	Output unlatch instruction(U):	
	Symbol :(U)	
	It is a latch type coil of the output. It is used to reset or unlatch the latched coil if the input become true or 1 for one input scan.	

Answers

22531

		Marks			
a)	For unity feedback control system	6M			
	$G(s) = \frac{100 (S+2)}{s^2}$				
	S^2				
	Calculate all error constants.				
Ans:	Q5 a> (100 (s+2)	2M for			
	$G(s) = \frac{100(s+2)}{s^2}$ Converting this into standard form $G(s) = \frac{100 \times 2(\frac{s}{2} + 1)}{s^2}$	each error			
	Converting this into standard form	coeffic			
	$G(S) = \frac{100 \times 2\left(\frac{3}{2} + 1\right)}{100 \times 2\left(\frac{3}{2} + 1\right)}$	nt			
	G(3) = 200 (1+0.51)				
	Positional error coefficient $K_p = \lim_{s \to 0} G(s) \cdot H(s)$ $K_p = \lim_{s \to 0} \frac{200(1+0.5s)}{s^2} = \frac{20}{s}$				
	Kp = lim 200 (1+0.51) = 00				
	Velocitie eggo. Coefficient K. = lims. G(s). H(s)				
	lim 8: 200 (1+0.5s) 300				
	$\Lambda_{V} = \frac{1}{2} = 0$				
	Velocity error coefficient $K_V = \lim_{s \to 0} S \cdot g(s) \cdot H(s)$ $K_V = \lim_{s \to 0} \frac{S \cdot 200 (1 + 0.5s)}{s^2} = 00$ Acceleration error coefficient $K_0 = \lim_{s \to 0} S \cdot g(s) \cdot H(s)$ $K_0 = \lim_{s \to 0} \frac{S \cdot 200 (1 + 0.5s)}{s^2} = 200$ $K_0 = 0$, $K_0 = 0$ $K_0 = 0$, $K_0 = 0$				
	3-10 = 200 . Ka= 200				
b)	Describe Operating cycle of PLC with neat diagram.	6M			
Ans:		Diagran			
		2M			
	INPUT SCAN	Explana			
	V PROGRAM SCAN	on : 4M			
	TROGRAM SCAN				
	OUPUT SCAN				
	The scan cycle consist of three steps.				
	Input scan, program scan and output scan.				
	Input scap, program scap and output scap				

22531

	PLC checks ON or OFF status of each input point connected to the module. This informatio is stored in input status file. Then CPU starts executing user program left to right and top to bottom from the first status file.					
	instruction to the last. It updates the output status file depending on the program.					
	In the output scan, data devices are energized or o			e is sent to	the output module and the	
c)	Develop a ladder diagram	n for 4:1 Multip	olexer.			6M
Ans:	Truth table of 4:1 Multiplexer is as shown below. Depending on the signal on select lines one of the inputs is selected and directed to the output.				Truth Table: 2M	
		Select Da	Select Data Inputs			Ladder Diagra
		S ₁	S ₀	Y		
		0	0	D ₀		
		0	1	D ₁		
		1	0	D ₂		
		1	1	D ₃		
	Ladder Diagram:					
	000 L:1	1 S0 D0			O:2/0	
		1 S0 D1 /0 <u>i:1/1</u> i:1/	4			

22531

Q. No.	Sub Q. N.		Answers		Marking Scheme		
6.		Attempt any TWO of the	e following :		12- Total Marks		
	a)	Illustrate PLC timer in de	etail.		6M		
	Ans:	Depending on the time of a contract of the con	delay and operation there are	two types of timers PLC timer	ON delay timer:3		
		(ii) OFF delay timer			M		
		ON delay timer: This instruction counts time interval when conditions preceding it in the rung are true. Produces an output when accumulated reaches the preset value.					
		Use Ton instruction to turn an output on or off after the timer has been on for a preset time interval. The Ton instruction begins to count time base intervals when the rung conditions become true.					
		The accumulated value is reset when the rung condition go false regardless of whether the timer has timed out					
		Instruction parameter- Timer TON is 3 word element.					
		15 14 2 1					
		word	EN DN	16 bit 16			
		1 preset value word Accumulato 2 r value		bit 16 bit			

Subject Name: Control System and PLC Model Answer Subject Code:

22531

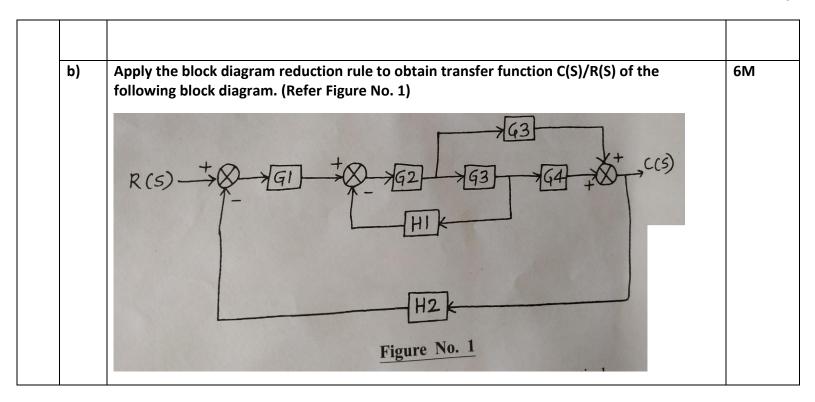
24

Status bit explanation-

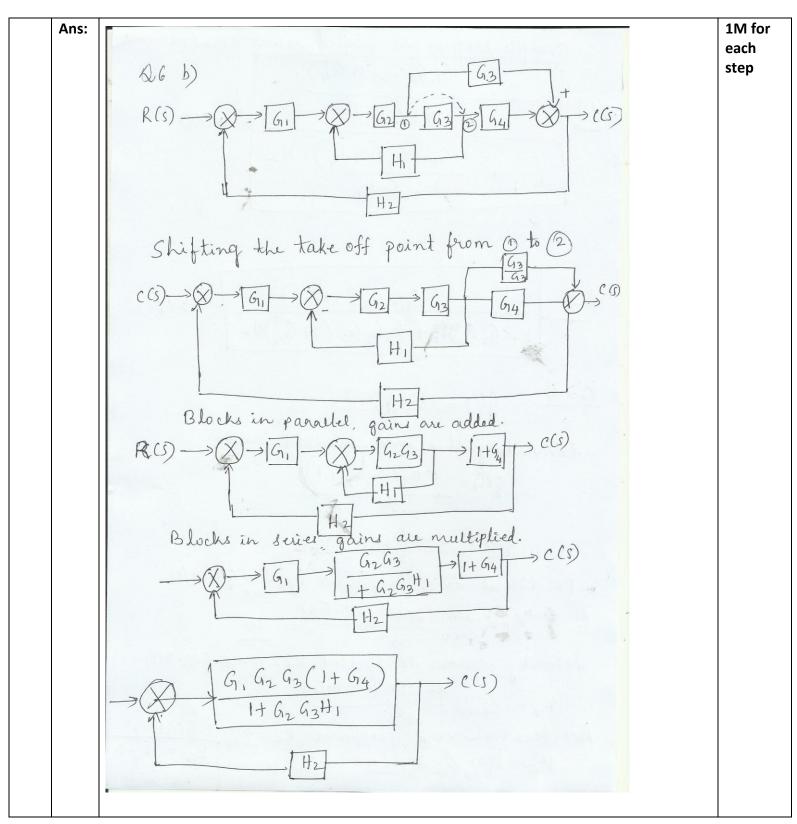
- Timer done bit (bit13)-DN is set when the accumulated value is equal to or greater than the preset value. It is reset when rung condition become false.
- Timer enable bit (bit 14)-EN is set when rung condition are true. It is reset when rung condition become false.
- iii) Timer timing bit (bit15)-TT is set when rung conditions are true & the accumulated value is less than the preset value. It is reset when the rung conditions go false or when the done bit is set.

(ii) **OFF delay timer**: This instruction counts time interval when conditions preceding it in the rung are false. Produces low output when accumulated value reaches the preset value. Use Toff instruction to turn an output on or off after the timer has been off for a preset timer has been off for a preset time intervals. The Toff instruction begins to count time base intervals when the rung makes a true to false to transition.

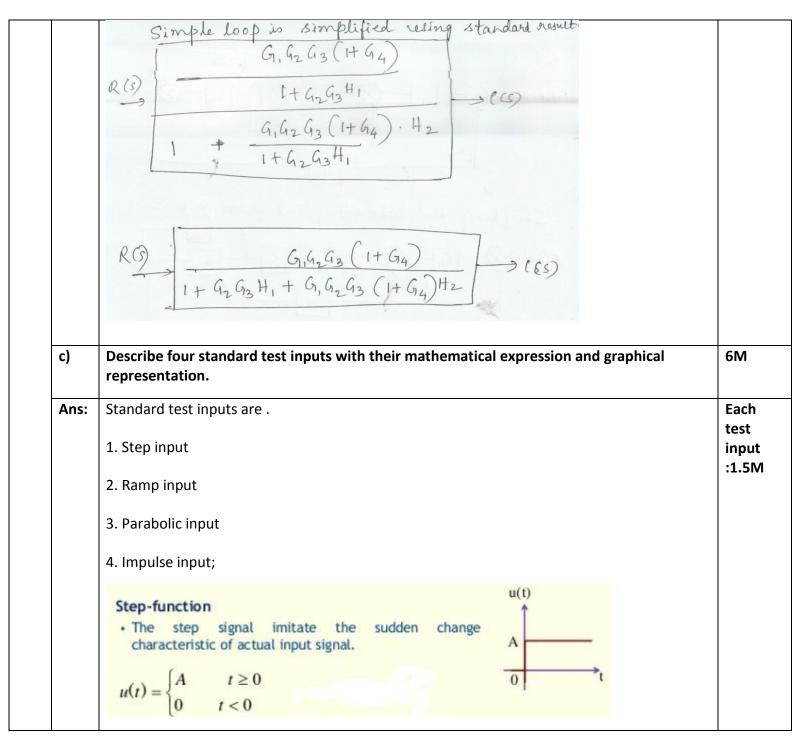
As long as rung conditions remain false the timer increments its accumulated value each scan until it reaches the preset value. The accumulated value is reset when the rung conditions go true regardless of whether the timer has timed out. Instruction parameter-Timer TOFF is 3 word element.


		14	13	12 11 10 9 8 7 6 5 4	
	15	3 2 1 0			
word					16
0	TT\EN	TT\EN	DN		bit
word					16
1	preset value				bit
word	Accumulat				16
2	or value				bit

Status bit explanation-


- i) Timer done bit(bit13)-DN is reset when the accumulated value is equal to or greater than the preset value. It is set when rung condition are true.
- ii) Timer enable bit(bit 14)-EN is set when rung condition are true. It is reset when rung condition become false.
- iii) Timer timing bit(bit15)-TT is set when rung conditions are false & the accumulated value is less than the preset value. It is reset when the rung conditions go true or when the done bit is reset.

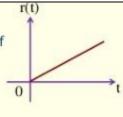
Subject Name: Control System and PLC <u>Model Answer</u> Subject Code:


22531

22531

22531

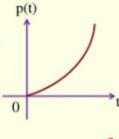
Subject Name: Control System and PLC <u>Model Answer</u> Subject Code:


22531

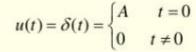
28

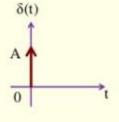
□ Ramp-function

 The ramp signal imitate the constant velocity characteristic of actual input signal.


$$r(t) = \begin{cases} At & t \ge 0 \\ 0 & t < 0 \end{cases}$$

□ Parabolic-function


 The parabolic signal imitate the constant acceleration characteristic of actual input signal.


$$p(t) = \begin{cases} \frac{At^2}{2} & t \ge 0\\ 0 & t < 0 \end{cases}$$

Impulse-Function

 The impulse signal imitate the sudden shock characteristic of actual input signal.

